pp 1–14 | Cite as

UV-Ozone Functionalization of 2D Materials

  • Stephen J. McDonnell
  • Robert M. Wallace
Application of Atomic Layer Deposition for Functional Nanomaterials


Integrating two-dimensional (2D) materials into the current nanoelectronic process requires control over the deposition of gate oxides onto these materials. Atomic layer deposition (ALD) relies on surface dangling bonds that are scarce for 2D materials. This review summarizes the advances made in understanding and controlling the nucleation of ALD oxides on these materials. As an example, we focus on ozone-based processes including UV-ozone pretreatments, which we have found to effectively functionalize the surface of molybdenum disulfide. Furthermore, we discuss the advantages and limitations of various functionalization or seeding techniques, such as limits in scalability or damage to the 2D materials.



RMW acknowledges the support of the Erik Jonsson Distinguished Chair at the University of Texas at Dallas.


  1. 1.
    K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Proc. Natl. Acad. Sci. USA. 102, 10451 (2005).CrossRefGoogle Scholar
  3. 3.
    T.W. Ebbesen and H. Hiura, Adv. Mater. (Weinheim, Ger.) 7, 582 (1995).CrossRefGoogle Scholar
  4. 4.
    X. Lu, M. Yu, H. Huang, and R.S. Ruoff, Nanotechnology 10, 269 (1999).CrossRefGoogle Scholar
  5. 5.
    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).CrossRefGoogle Scholar
  6. 6.
    O. Frank and M. Kalbac, Graphene (Sawston: Woodhead Publishing, 2014), pp. 27–49.CrossRefGoogle Scholar
  7. 7.
    W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, and G. Martinez, Solid State Commun. 143, 92 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Huang, S. Chen, A.T.S. Wee, and W. Chen, Graphene (Sawston: Woodhead Publishing, 2014), pp. 3–26..CrossRefGoogle Scholar
  9. 9.
    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193–335 (1969).CrossRefGoogle Scholar
  10. 10.
    H. Tributsch and J. Bennett, J. Electroanal. Chem. Interf. Electrochem. 81, 97 (1977).CrossRefGoogle Scholar
  11. 11.
    W. Kautek and H. Gerischer, Ber. Bunsenges. Phys. Chem. 84, 645 (1980).CrossRefGoogle Scholar
  12. 12.
    W. Kautek, H. Gerischer, and H. Tributsch, J. Electrochem. Soc. 127, 2471 (1980).CrossRefGoogle Scholar
  13. 13.
    E. Fortin and W. Sears, J. Phys. Chem. Solids 43, 881 (1982).CrossRefGoogle Scholar
  14. 14.
    H. Boehm, A. Clauss, G. Fischer, and U. Hofmann, Zeitschrift Für Naturforschung B 17, 150 (1962).CrossRefGoogle Scholar
  15. 15.
    P. Joensen, R. Frindt, and S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
  16. 16.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  17. 17.
    Web of Science citation reports are limited to 10,000 citations, therefore to generate a report for MoS2 the search had to be refined to include only the following areas. Materials Science Multi-disciplinary, Applied Physics, Nanoscience Nanotechnology, and Electrochemistry.Google Scholar
  18. 18.
    A.K. Geim and I.V. Grigorieva, Nature 499, 419 (2013).CrossRefGoogle Scholar
  19. 19.
    D.R. Dreyer, R.S. Ruoff, and C.W. Bielawski, Angew. Chem. Int. Ed. 49, 9336 (2010).CrossRefGoogle Scholar
  20. 20.
    R.S. Ruoff, MRS Bull. 37, 1314 (2012).CrossRefGoogle Scholar
  21. 21.
    H. Cun, A. Hemmi, E. Miniussi, C. Bernard, B. Probst, K. Liu, D.T. Alexander, A. Kleibert, G. Mette, and M. Weinl, Nano Lett. 18, 1205 (2018).CrossRefGoogle Scholar
  22. 22.
    T. Greber, arXiv preprint arXiv:0904.1520 (2009).
  23. 23.
    W. Jaegermann and H. Tributsch, Prog. Surf. Sci. 29, 1 (1988).CrossRefGoogle Scholar
  24. 24.
    S.J. McDonnell and R.M. Wallace, Thin Solid Films 616, 482 (2016).CrossRefGoogle Scholar
  25. 25.
    S.M. George, Chem. Rev. (Washington, DC, U. S.) 110, 111 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Kim and W.-J. Maeng, Thin Solid Films 517, 2563 (2009).CrossRefGoogle Scholar
  27. 27.
    Y. Xuan, Y. Wu, T. Shen, M. Qi, M.A. Capano, J.A. Cooper, and P. Ye, Appl. Phys. Lett. 92, 013101 (2008).CrossRefGoogle Scholar
  28. 28.
    H.G. Kim and H.-B.-R. Lee, Chem. Mater. 29, 3809 (2017).CrossRefGoogle Scholar
  29. 29.
    D.B. Farmer and R.G. Gordon, Nano Lett. 6, 699 (2006).CrossRefGoogle Scholar
  30. 30.
    J. Williams, L. DiCarlo, and C. Marcus, Science 317, 638 (2007).CrossRefGoogle Scholar
  31. 31.
    R.L. Puurunen, J. Appl. Phys. 97, 9 (2005).CrossRefGoogle Scholar
  32. 32.
    J.R. Vig and J. LeBus, IEEE Trans. Parts Hybrids Packag. 12, 365 (1976).CrossRefGoogle Scholar
  33. 33.
    J.R. Vig, J. Vac. Sci. Technol. A 3, 1027 (1985).CrossRefGoogle Scholar
  34. 34.
    G. Wilk and B. Brar, IEEE Electron Device Lett. 20, 132 (1999).CrossRefGoogle Scholar
  35. 35.
    Z. Cui, J.M. Madsen, and C.G. Takoudis, J. Appl. Phys. 87, 8181 (2000).CrossRefGoogle Scholar
  36. 36.
    F. De Smedt, C. Vinckier, I.De Cornelissen, S. Gendt, and M. Heyns, J. Electrochem. Soc. 147, 1124 (2000).CrossRefGoogle Scholar
  37. 37.
    G. Pant, P. Punchaipetch, M. Kim, R.M. Wallace, and B.E. Gnade, Thin Solid Films 460, 242 (2004).CrossRefGoogle Scholar
  38. 38.
    P. Punchaipetch, G. Pant, M. Kim, R.M. Wallace, and B.E. Gnade, J. Vac. Sci. Technolol. A 22, 395 (2004).CrossRefGoogle Scholar
  39. 39.
    B. Lee, S.-Y. Park, H.-C. Kim, K. Cho, E.M. Vogel, M.J. Kim, R.M. Wallace, and J. Kim, Appl. Phys. Lett. 92, 203102 (2008).CrossRefGoogle Scholar
  40. 40.
    B. Lee, G. Mordi, T. Park, L. Goux, Y.J. Chabal, K. Cho, E.M. Vogel, M. Kim, L. Colombo, and R.M. Wallace, ECS Trans. 19, 225 (2009).CrossRefGoogle Scholar
  41. 41.
    A. Pirkle, S. McDonnell, B. Lee, J. Kim, L. Colombo, and R.M. Wallace, Appl. Phys. Lett. 97, 082901 (2010).CrossRefGoogle Scholar
  42. 42.
    S. McDonnell, A. Pirkle, J. Kim, L. Colombo, and R.M. Wallace, J. Appl. Phys. 112, 104110 (2012).CrossRefGoogle Scholar
  43. 43.
    B. Lee, G. Mordi, M.J. Kim, Y.J. Chabal, E.M. Vogel, R.M. Wallace, K.J. Cho, L. Colombo, and J. Kim, Appl. Phys. Lett. 97, 043107 (2010).CrossRefGoogle Scholar
  44. 44.
    A.R. Pirkle, Y.J. Chabal, L. Colombo, and R.M. Wallace, ECS Trans. 19, 215 (2009).CrossRefGoogle Scholar
  45. 45.
    G. Lee, B. Lee, J. Kim, and K. Cho, J. Phys. Chem. C 113, 14225 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).CrossRefGoogle Scholar
  47. 47.
    J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, and E.M. Vogel, ACS Nano 6, 3224 (2012).CrossRefGoogle Scholar
  48. 48.
    H. Liu and P.D. Ye, IEEE Electron Device Lett. 33, 546 (2012).CrossRefGoogle Scholar
  49. 49.
    H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
  50. 50.
    H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).CrossRefGoogle Scholar
  51. 51.
    H. Liu, K. Xu, X. Zhang, and P.D. Ye, Appl. Phys. Lett. 100, 152115 (2012).CrossRefGoogle Scholar
  52. 52.
    S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, and R.M. Wallace, ACS Nano 7, 10354 (2013).CrossRefGoogle Scholar
  53. 53.
    A. Azcatl, S. McDonnell, K. Santosh, X. Peng, H. Dong, X. Qin, R. Addou, G.I. Mordi, N. Lu, J. Kim, M.J. Kim, K. Cho, and R.M. Wallace, Appl. Phys. Lett. 104, 111601 (2014).CrossRefGoogle Scholar
  54. 54.
    R.M. Wallace, Physics and Technology of High-K Gate Dielectrics 6, ECS Transactions, 214th ECS Meeting, ed. S. Kar, D. Landheer, M. Houssa, D. Misra, S. Van Elshocht, and H. Iwai, vol. 16, no. 5 (Honolulu, HI, October 12–17, 2008), pp. 255–271.Google Scholar
  55. 55.
    M. Milojevic, F. Aguirre-Tostado, C. Hinkle, H. Kim, E. Vogel, J. Kim, and R. Wallace, Appl. Phys. Lett. 93, 202902 (2008).CrossRefGoogle Scholar
  56. 56.
    D.M. Hausmann, E. Kim, J. Becker, and R.G. Gordon, Chem. Mater. 14, 4350 (2002).CrossRefGoogle Scholar
  57. 57.
    S. McDonnell, H. Dong, J.M. Hawkins, B. Brennan, M. Milojevic, F.S. Aguirre-Tostado, D.M. Zhernokletov, C.L. Hinkle, J. Kim, and R.M. Wallace, Appl. Phys. Lett. 100, 141606 (2012).CrossRefGoogle Scholar
  58. 58.
    Y.-S. Lin, P.-H. Cheng, K.-W. Huang, H.-C. Lin, and M.-J. Chen, Appl. Surf. Sci. 443, 421 (2018).CrossRefGoogle Scholar
  59. 59.
    X. Zou, J. Xu, H. Huang, Z. Zhu, H. Wang, B. Li, L. Liao, and G. Fang, Nanotechnology 29, 245201 (2018).CrossRefGoogle Scholar
  60. 60.
    M. Cortez-Valadez, C. Fierro, J. Farias-Mancilla, A. Vargas-Ortiz, M. Flores-Acosta, R. Ramírez-Bon, J. Enriquez-Carrejo, C. Soubervielle-Montalvo, and P. Mani-Gonzalez, Chem. Phys. 472, 81 (2016).CrossRefGoogle Scholar
  61. 61.
    Y. Hu, H. Jiang, K.M. Lau, and Q. Li, Semicond. Sci. Technol. 33, 045004 (2018).CrossRefGoogle Scholar
  62. 62.
    T. Roy, M. Tosun, X. Cao, H. Fang, D.-H. Lien, P. Zhao, Y.-Z. Chen, Y.-L. Chueh, J. Guo, and A. Javey, ACS Nano 9, 2071 (2015).CrossRefGoogle Scholar
  63. 63.
    A. Dahal, R. Addou, A. Azcatl, H. Coy-Diaz, N. Lu, X. de Peng, F. Dios, J. Kim, M.J. Kim, R.M. Wallace, and B. Matthias, ACS Appl. Mater. Interfaces. 7, 2082 (2015).CrossRefGoogle Scholar
  64. 64.
    B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, Appl. Phys. Lett. 97, 123105 (2010).CrossRefGoogle Scholar
  65. 65.
    S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, arXiv preprint arXiv:0901.2901 (2009).
  66. 66.
    D.B. Farmer, Y.-M. Lin, and P. Avouris, Appl. Phys. Lett. 97, 013103 (2010).CrossRefGoogle Scholar
  67. 67.
    B. Fallahazad, K. Lee, G. Lian, S. Kim, C.M. Corbet, D.A. Ferrer, L. Colombo, and E. Tutuc, Appl. Phys. Lett. 100, 093112 (2012).CrossRefGoogle Scholar
  68. 68.
    S. McDonnell, A. Azcatl, G. Mordi, C. Floresca, A. Pirkle, L. Colombo, J. Kim, M. Kim, and R. Wallace, Appl. Surf. Sci. 294, 95 (2014).CrossRefGoogle Scholar
  69. 69.
    I. McGovern, E. Dietz, H. Rotermund, A. Bradshaw, W. Braun, W. Radlik, and J. McGilp, Surf. Sci. 152, 1203 (1985).CrossRefGoogle Scholar
  70. 70.
    S. McDonnell, C. Smyth, C.L. Hinkle, and R.M. Wallace, ACS Appl. Mater. Interf. 8, 8289 (2016).CrossRefGoogle Scholar
  71. 71.
    C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, and R.M. Wallace, J. Phys. Chem. C 120, 14719 (2016).CrossRefGoogle Scholar
  72. 72.
    C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, and R.M. Wallace, 2D Mater. 4, 025084 (2017).CrossRefGoogle Scholar
  73. 73.
    J.M.P. Alaboson, Q.H. Wang, J.D. Emery, A.L. Lipson, M.J. Bedzyk, J.W. Elam, M.J. Pellin, and M.C. Hersam, ACS Nano 5, 5223 (2011).CrossRefGoogle Scholar
  74. 74.
    J.H. Park, S. Fathipour, I. Kwak, K. Sardashti, C.F. Ahles, S.F. Wolf, M. Edmonds, S. Vishwanath, H.G. Xing, S.K. Fullerton-Shirey, A. Seabaugh, and A.C. Kummel, ACS Nano 10, 6888 (2016).CrossRefGoogle Scholar
  75. 75.
    J. Yang, S. Kim, W. Choi, S.H. Park, Y. Jung, M.H. Cho, and H. Kim, ACS Appl. Mater. Interf. 5, 4739 (2013).CrossRefGoogle Scholar
  76. 76.
    C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, J. Kim, and R.M. Wallace, Appl. Phys. Lett. 91, 163512 (2007).CrossRefGoogle Scholar
  77. 77.
    P. Zhao, P. Vyas, S. McDonnell, P. Bolshakov-Barrett, A. Azcatl, C. Hinkle, P. Hurley, R. Wallace, and C. Young, Microelectron. Eng. 147, 151 (2015).CrossRefGoogle Scholar
  78. 78.
    H.I. Yang, S. Park, and W. Choi, Appl. Surf. Sci. 443, 91 (2018).CrossRefGoogle Scholar
  79. 79.
    Q.V. Le, T.P. Nguyen, and S.Y. Kim, Phys. Status Sol. Rapid Res Lett. 8, 390 (2014).CrossRefGoogle Scholar
  80. 80.
    P. Zhao, A. Azcatl, Y.Y. Gomeniuk, P. Bolshakov, M. Schmidt, S.J. McDonnell, C.L. Hinkle, P.K. Hurley, R.M. Wallace, and C.D. Young, ACS Appl. Mater. Interf. 9, 24348 (2017).CrossRefGoogle Scholar
  81. 81.
    P. Bolshakov, P. Zhao, A. Azcatl, P.K. Hurley, R.M. Wallace, and C.D. Young, Appl. Phys. Lett. 111, 032110 (2017).CrossRefGoogle Scholar
  82. 82.
    P. Zhao, A. Azcatl, P. Bolshakov, J. Moon, C.L. Hinkle, P.K. Hurley, R.M. Wallace, and C.D. Young, J. Vac. Sci. Technol. B 35, 01A118 (2017).CrossRefGoogle Scholar
  83. 83.
    P. Bolshakov, P. Zhao, A. Azcatl, P.K. Hurley, R.M. Wallace, and C.D. Young, Microelectron. Eng. 178, 190 (2017).CrossRefGoogle Scholar
  84. 84.
    P. Zhao, A. Khosravi, P. Zhao, P.K. Hurley, C.L. Hinkle, R.M. Wallace, and C.D. Young, 2D Mater 5, 031002 (2018).CrossRefGoogle Scholar
  85. 85.
    P. Bolshakov, A. Khosravi, P. Zhao, P.K. Hurley, C.L. Hinkle, R.M. Wallace, and C.D. Young, Appl. Phys. Lett. 112, 253502 (2018).CrossRefGoogle Scholar
  86. 86.
    A. Azcatl, K. Santosh, X. Peng, N. Lu, S. McDonnell, X. Qin, F. de Dios, R. Addou, J. Kim, M.J. Kim, K. Cho, and R.M. Wallace, Appl. Phys. Lett. 112, 253502 (2018).CrossRefGoogle Scholar
  87. 87.
    J. Guo, B. Yang, Z. Zheng, and J. Jiang, Phys. E 87, 150 (2017).CrossRefGoogle Scholar
  88. 88.
    W. Su, N. Kumar, S.J. Spencer, N. Dai, and D. Roy, Nano. Res. 8, 3878 (2015).CrossRefGoogle Scholar
  89. 89.
    S. Kato, R. Ishikawa, Y. Kubo, H. Shirai, and K. Ueno, Jpn. J. Appl. Phys. 50, 071604 (2011).CrossRefGoogle Scholar
  90. 90.
    D. Burman, R. Ghosh, S. Santra, S.K. Ray, and P.K. Guha, Nanotechnology 28, 435502 (2017).CrossRefGoogle Scholar
  91. 91.
    W. Xing, Y. Chen, X. Wang, L. Lv, X. Ouyang, Z. Ge, and H. Huang, ACS Appl. Mater. Interf. 8, 26916 (2016).CrossRefGoogle Scholar
  92. 92.
    S. Park, S.Y. Kim, Y. Choi, M. Kim, H. Shin, J. Kim, and W. Choi, ACS Appl. Mater. Interf. 8, 11189 (2016).CrossRefGoogle Scholar
  93. 93.
    R. Addou, C.M. Smyth, J.-Y. Noh, Y.-C. Lin, Y. Pan, S.M. Eichfeld, S. Fölsch, J.A. Robinson, K. Cho, and R.M. Feenstra, ACS Nano 11, 5130 (2017).CrossRefGoogle Scholar
  94. 94.
    Y. Ma, S.Coy Kolekar, H. Diaz, J. Aprojanz, I. Miccoli, C. Tegenkamp, and M. Batzill, ACS Nano 11, 5130 (2017).CrossRefGoogle Scholar
  95. 95.
    L. Cheng, X. Qin, A.T. Lucero, A. Azcatl, J. Huang, R.M. Wallace, K. Cho, and J. Kim, ACS Appl. Mater. Interf. 6, 11834 (2014).CrossRefGoogle Scholar
  96. 96.
    A. Azcatl, Q. Wang, M.J. Kim, and R.M. Wallace, APL Mater. 5, 086108 (2017).CrossRefGoogle Scholar
  97. 97.
    S. Jandhyala, G. Mordi, B. Lee, G. Lee, C. Floresca, P.-R. Cha, J. Ahn, R.M. Wallace, Y.J. Chabal, and M.J. Kim, ACS Nano 6, 2722 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations