, Volume 71, Issue 1, pp 197–211 | Cite as

Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display

  • Seunghwan Lee
  • Ju-Hwan Han
  • Seong-Hyeon Lee
  • Geon-Ho Baek
  • Jin-Seong ParkEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials


Recent trends in thin film encapsulations (TFEs), fabricating organic/inorganic encapsulation films are reviewed. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. However, organic film should be combined with a hybrid structure for improved flexibility and longer lag time. We introduce various organic deposition methods and mechanisms for enhancing barrier performance. However, stress engineering is required to achieve high performance TFEs for flexible devices, new materials and deposition methods. First, modulating the internal stress in TFEs should be considered to increase flexibility by adopting other layers that can reduce internal stress. Second, controlling the configuration of the hybrid structure can prevent degradation due to cracks. Third, the introduction of a neutral plane as the middle layer decreases the strain. The results summarize how the device can improve barrier performance under external stress. This paper can guide the improvements in barrier performance.



This research was supported by the MOTIE (Ministry of Trade, Industry & Energy (#10080633) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device. And this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1D1A1B03034035).


  1. 1.
    S.Y. Kim, K.Y. Kim, Y.-H. Tak, and J.-L. Lee, Appl. Phys. Lett. 89, 132108 (2006).Google Scholar
  2. 2.
    M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, Adv. Funct. Mater. 11, 116 (2001).Google Scholar
  3. 3.
    P. Burrows, V. Bulovic, S. Forrest, L.S. Sapochak, D. McCarty, and M. Thompson, Appl. Phys. Lett. 65, 2922 (1994).Google Scholar
  4. 4.
    A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr., and P.G. Schultz, Nature 382, 609 (1996).Google Scholar
  5. 5.
    Y.C. Han, E. Kim, W. Kim, H.-G. Im, B.-S. Bae, and K.C. Choi, Org. Electron. 14, 1435 (2013).Google Scholar
  6. 6.
    P.F. Carcia, R. McLean, M. Reilly, M. Groner, and S. George, Appl. Phys. Lett. 89, 031915 (2006).Google Scholar
  7. 7.
    J. Meyer, P. Görrn, F. Bertram, S. Hamwi, T. Winkler, H.H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky, Adv. Mater. 21, 1845 (2009).Google Scholar
  8. 8.
    J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 94, 157 (2009).Google Scholar
  9. 9.
    A. Ghosh, L. Gerenser, C. Jarman, and J. Fornalik, Appl. Phys. Lett. 86, 223503 (2005).Google Scholar
  10. 10.
    J.-S. Park, H. Chae, H.K. Chung, and S.I. Lee, Appl. Phys. Lett. 26, 034001 (2011).Google Scholar
  11. 11.
    S. S. Kim, H. S. Kim, J. G. Lee and C. W. Seo, In 64.1: Invited Paper: Ultra-high Precision Inkjet Printing Technology for Display, SID Symposium Digest of Technical Papers, Wiley Online Library : 839 (2018).Google Scholar
  12. 12.
    A. Erlat, B. Henry, J. Ingram, D. Mountain, A. McGuigan, R. Howson, C. Grovenor, G. Briggs, and Y. Tsukahara, Thin Solid Films 388, 78 (2001).Google Scholar
  13. 13.
    G. Nisato, M. Kuilder, P. Bouten, L. Moro, O. Philips and N. Rutherford, In P-88: Thin Film Encapsulation for OLEDs: Evaluation of Multi-layer Barriers using the Ca Test, SID Symposium Digest of Technical Papers, Wiley Online Library: pp 550 (2003).Google Scholar
  14. 14.
    D. Spee, K. van der Werf, J. Rath, and R. Schropp, Phys. Status Solidi RRL 6, 151 (2012).Google Scholar
  15. 15.
    H. Nakayama and M. Ito, Thin Solid Films 519, 4483 (2011).Google Scholar
  16. 16.
    A. da Silva Sobrinho, G. Czeremuszkin, M. Latreche, and M. Wertheimer, J. Vac. Sci. Technol., A 18, 149 (2000).Google Scholar
  17. 17.
    K. Yamashita, T. Mori, and T. Mizutani, J. Phys. D Appl. Phys. 34, 740 (2001).Google Scholar
  18. 18.
    P. Carcia, R. McLean, M. Groner, A. Dameron, and S. George, J. Appl. Phys. 106, 023533 (2009).Google Scholar
  19. 19.
    A. da Silva Sobrinho, M. Latreche, G. Czeremuszkin, J. Klemberg-Sapieha, and M. Wertheimer, J. Vac. Sci. Technol., A 16, 3190 (1998).Google Scholar
  20. 20.
    S.J. Yun, Y.-W. Ko, and J.W. Lim, Appl. Phys. Lett. 85, 4896 (2004).Google Scholar
  21. 21.
    H. Kim, J. Vac. Sci. Technol., B 21, 2231 (2003).Google Scholar
  22. 22.
    M. Leskelä and M. Ritala, Thin Solid Films 409, 138 (2002).Google Scholar
  23. 23.
    A.A. Dameron, S.D. Davidson, B.B. Burton, P.F. Carcia, R.S. McLean, and S.M. George, J. Phys. Chem. C 112, 4573 (2008).Google Scholar
  24. 24.
    S. Lim, J.-M. Kim, D. Kim, S. Kwon, J.-S. Park, and H. Kim, J. Electrochem. Soc. 157, H214 (2010).Google Scholar
  25. 25.
    J. Sheng, J.-H. Han, W.-H. Choi, J. Park, and J.-S. Park, ACS Appl Mater. Interfaces 9, 42928 (2017).Google Scholar
  26. 26.
    J. Park, T.-H. Jung, J.-H. Lee, H.-S. Kim, and J.-S. Park, Ceram. Int. 41, 1839 (2015).Google Scholar
  27. 27.
    B.D. Ahn, D.-W. Choi, C. Choi, and J.-S. Park, Appl. Phys. Lett. 105, 092103 (2014).Google Scholar
  28. 28.
    J.-D. Kwon, S.-H. Kwon, T.-H. Jung, K.-S. Nam, K.-B. Chung, D.-H. Kim, and J.-S. Park, Appl. Surf. Sci. 285, 373 (2013).Google Scholar
  29. 29.
    D.-W. Choi, K.-B. Chung, and J.-S. Park, Thin Solid Films 546, 31 (2013).Google Scholar
  30. 30.
    J.-D. Kwon, J.-W. Lee, K.-S. Nam, D.-H. Kim, Y. Jeong, S.-H. Kwon, and J.-S. Park, Curr. Appl. Phys. 12, S134 (2012).Google Scholar
  31. 31.
    F.H. Fabreguette, R.A. Wind, and S.M. George, Appl. Phys. Lett. 88, 013116 (2006).Google Scholar
  32. 32.
    T. Suntola and J. Hyvarinen, Annu. Rev. Mater. Sci. 15, 177 (1985).Google Scholar
  33. 33.
    J.-H. Choi, Y.-M. Kim, Y.-W. Park, T.-H. Park, J.-W. Jeong, H.-J. Choi, E.-H. Song, J.-W. Lee, C.-H. Kim, and B.-K. Ju, Nanotechnology 21, 475203 (2010).Google Scholar
  34. 34.
    S. Zhang, W. Xue, and Z. Yu, Thin Solid Films 580, 101 (2015).Google Scholar
  35. 35.
    J.H. Kwon, Y. Jeon, S. Choi, J.W. Park, H. Kim, and K.C. Choi, ACS Appl. Mater. Interfaces 9, 43983 (2017).Google Scholar
  36. 36.
    S.-W. Seo, E. Jung, H. Chae, S.J. Seo, H.K. Chung, and S.M. Cho, Thin Solid Films 550, 742 (2014).Google Scholar
  37. 37.
    S.-W. Seo, H.K. Chung, H. Chae, S.J. Seo, and S.M. Cho, NANO 8, 1350041 (2013).Google Scholar
  38. 38.
    E.G. Jeong, Y.C. Han, H.-G. Im, B.-S. Bae, and K.C. Choi, Org. Electron. 33, 150 (2016).Google Scholar
  39. 39.
    S.H. Lim, S.-W. Seo, H. Lee, H. Chae, and S.M. Cho, Korean J. Chem. Eng. 33, 1971 (2016).Google Scholar
  40. 40.
    E. Kim, Y. Han, W. Kim, K.C. Choi, H.-G. Im, and B.-S. Bae, Org. Electron. 14, 1737 (2013).Google Scholar
  41. 41.
    Y.C. Han, E.G. Jeong, H. Kim, S. Kwon, H.-G. Im, B.-S. Bae, and K.C. Choi, RSC Adv. 6, 40835 (2016).Google Scholar
  42. 42.
    F. Nehm, H. Klumbies, C. Richter, A. Singh, U. Schroeder, T. Mikolajick, T. Mönch, C. Hoßbach, M. Albert, and J.W. Bartha, ACS Appl Mater. Interfaces 7, 22121 (2015).Google Scholar
  43. 43.
    A. Bulusu, A. Singh, C.-Y. Wang, A. Dindar, C. Fuentes-Hernandez, H. Kim, D. Cullen, B. Kippelen, and S. Graham, J. Appl. Phys. 118, 085501 (2015).Google Scholar
  44. 44.
    L. Wang, C. Ruan, M. Li, J. Zou, H. Tao, J. Peng, and M. Xu, J. Mater. Chem. C 5, 4017 (2017).Google Scholar
  45. 45.
    K. Choi, S. Nam, Y. Lee, M. Lee, J. Jang, S.J. Kim, Y.J. Jeong, H. Kim, S. Bae, and J.-B. Yoo, ACS Nano 9, 5818 (2015).Google Scholar
  46. 46.
    H.-K. Seo, M.-H. Park, Y.-H. Kim, S.-J. Kwon, S.-H. Jeong, and T.-W. Lee, ACS Appl. Mater. Interfaces 8, 14725 (2016).Google Scholar
  47. 47.
    T. Nam, Y.J. Park, H. Lee, I.-K. Oh, J.-H. Ahn, S.M. Cho, and H. Kim, Carbon 116, 553 (2017).Google Scholar
  48. 48.
    D.-W. Choi, H. Park, J.H. Li, T.H. Han, and J.-S. Park, Carbon 125, 464 (2017).Google Scholar
  49. 49.
    S.Y. Kim, B.J. Kim, D.H. Kim, and S.G. Im, RSC Adv. 5, 68485 (2015).Google Scholar
  50. 50.
    B. J. Kim, D. H. Kim, S. Y. Kang, S. D. Ahn, and S. G. Im, J. Appl. Polym., Sci. 131 (2014).Google Scholar
  51. 51.
    B. J. Kim, H. Seong, H. Shim, Y. I. Lee, and S. G. Im, Adv. Eng. Mater., 19 (2017).Google Scholar
  52. 52.
    B.J. Kim, D. Han, S. Yoo, and S.G. Im, Korean J. Chem. Eng. 34, 892 (2017).Google Scholar
  53. 53.
    D. Spee, J.K. Rath, and R. Schropp, Thin Solid Films 575, 67 (2015).Google Scholar
  54. 54.
    S.-W. Seo, K.-H. Hwang, E. Jung, S.J. Seo, H. Chae, and S.M. Cho, Mater. Lett. 134, 142 (2014).Google Scholar
  55. 55.
    S.H. Lim, S.-W. Seo, E. Jung, H. Chae, and S.M. Cho, Korean J. Chem. Eng. 33, 1070 (2016).Google Scholar
  56. 56.
    S.-W. Seo, H. Chae, S. Joon Seo, H. Kyoon Chung, and S. Min Cho, Appl. Phys. Lett. 102, 161908 (2013).Google Scholar
  57. 57.
    S.-W. Seo, E. Jung, S. Joon Seo, H. Chae, H. Kyoon Chung, and S. Min Cho, J. Appl. Phys. 114, 143505 (2013).Google Scholar
  58. 58.
    B.H. Lee, B. Yoon, A.I. Abdulagatov, R.A. Hall, and S.M. George, Adv. Funct. Mater. 23, 532 (2013).Google Scholar
  59. 59.
    P. Sundberg and M. Karppinen, Beilstein J. Nanotechnol. 5, 1104 (2014).Google Scholar
  60. 60.
    D.-W. Choi, M. Yoo, H.M. Lee, J. Park, H.Y. Kim, and J.-S. Park, ACS Appl. Mater. Interfaces. 8, 12263 (2016).Google Scholar
  61. 61.
    S.-H. Jen, B.H. Lee, S.M. George, R.S. McLean, and P.F. Carcia, Appl. Phys. Lett. 101, 234103 (2012).Google Scholar
  62. 62.
    K.H. Yoon, H.S. Kim, K.S. Han, S.H. Kim, Y.-E.K. Lee, N.K. Shrestha, S.Y. Song, and M.M. Sung, ACS Appl. Mater. Interfaces. 9, 5399 (2017).Google Scholar
  63. 63.
    F.B. Sun, Y. Duan, Y.Q. Yang, P. Chen, Y.H. Duan, X. Wang, D. Yang, and K.W. Xue, Org. Electron. 15, 2546 (2014).Google Scholar
  64. 64.
    Z. Chen, H. Wang, X. Wang, P. Chen, Y. Liu, H. Zhao, Y. Zhao, and Y. Duan, Sci. Rep. 7, 40061 (2017).Google Scholar
  65. 65.
    W. Xiao, D.Y. Hui, C. Zheng, D. Yu, Y.Y. Qiang, C. Ping, C.L. Xiang, and Z. Yi, Nanoscale Res. Lett. 10, 130 (2015).Google Scholar
  66. 66.
    M. Park, S. Oh, H. Kim, D. Jung, D. Choi, and J.-S. Park, Thin Solid Films 546, 153 (2013).Google Scholar
  67. 67.
    A. Behrendt, J. Meyer, P. van de Weijer, T. Gahlmann, R. Heiderhoff, and T. Riedl, ACS Appl. Mater. Interfaces 8, 4056 (2016).Google Scholar
  68. 68.
    S. Lee, J.-Y. Kwon, D. Yoon, H. Cho, J. You, Y.T. Kang, D. Choi, and W. Hwang, Nanoscale Res. Lett. 7, 256 (2012).Google Scholar
  69. 69.
    D.K. Hwang, C. Fuentes-Hernandez, J. Kim, W.J. Potscavage Jr., S.J. Kim, and B. Kippelen, Adv. Mater. 23, 1293 (2011).Google Scholar
  70. 70.
    N. Cordero, J. Yoon, and Z. Suo, Appl. Phys. Lett. 90, 111910 (2007).Google Scholar
  71. 71.
    D.C. Miller, R.R. Foster, Y. Zhang, S.-H. Jen, J.A. Bertrand, Z. Lu, D. Seghete, J.L. O’Patchen, R. Yang, and Y.-C. Lee, J. Appl. Phys. 105, 093527 (2009).Google Scholar
  72. 72.
    M.K. Tripp, C. Stampfer, D.C. Miller, T. Helbling, C.F. Herrmann, C. Hierold, K. Gall, S.M. George, and V.M. Bright, Sens. Actuators, A 130, 419 (2006).Google Scholar
  73. 73.
    K. Tapily, J.E. Jakes, D. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. Elmustafa, J. Electrochem. Soc. 155, H545 (2008).Google Scholar
  74. 74.
    D.C. Miller, R.R. Foster, S.-H. Jen, J.A. Bertrand, S.J. Cunningham, A.S. Morris, Y.-C. Lee, S.M. George, and M.L. Dunn, Sens. Actuators, A 164, 58 (2010).Google Scholar
  75. 75.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).Google Scholar
  76. 76.
    G.L. Graff, R.E. Williford, and P.E. Burrows, J. Appl. Phys. 96, 1840 (2004).Google Scholar
  77. 77.
    W. Xiao, D. Yu, S.F. Bo, Y.Y. Qiang, Y. Dan, C. Ping, D.Y. Hui, and Z. Yi, RSC Adv. 4, 43850 (2014).Google Scholar
  78. 78.
    H. Zhang, H. Ding, M. Wei, C. Li, B. Wei, and J. Zhang, Nanoscale Res. Lett. 10, 169 (2015).Google Scholar
  79. 79.
    S.-W. Seo, E. Jung, C. Lim, H. Chae, and S.M. Cho, Thin Solid Films 520, 6690 (2012).Google Scholar
  80. 80.
    Y.G. Tropsha and N.G. Harvey, J. Phys. Chem. B 101, 2259 (1997).Google Scholar
  81. 81.
    S.-H. Jen, J.A. Bertrand, and S.M. George, J. Appl. Phys. 109, 084305 (2011).Google Scholar
  82. 82.
    Y. Leterrier, Prog. Mater Sci. 48, 1–55 (2003).Google Scholar
  83. 83.
    J.S. Lewis and M.S. Weaver, IEEE J. Sel. Top. Quantum Electron. 10, 45 (2004).Google Scholar
  84. 84.
    T. Chen, D. Wuu, C. Wu, C. Chiang, Y. Chen, and R. Horng, J. Electrochem. Soc. 153, F244 (2006).Google Scholar
  85. 85.
    S.I. Park, J.H. Ahn, X. Feng, S. Wang, Y. Huang, and J.A. Rogers, Adv. Funct. Mater. 18, 2673 (2008).Google Scholar
  86. 86.
    Y.F. Niu, S.F. Liu, J.Y. Chiou, C.Y. Huang, Y.W. Chiu, M.H. Lai, and Y.W. Liu, J. Soc. Inf. Disp. 24, 293 (2016).Google Scholar
  87. 87.
    J. Sheng, H.-J. Jeong, K.-L. Han, T. Hong, and J.-S. Park, J. Inf. Disp. 18, 159 (2017).Google Scholar
  88. 88.
    S. Kumar and M. Katiyar, J. Encapsulation Adsorpt. Sci. 7, 140 (2017).Google Scholar
  89. 89.
    Y. Duan, X. Wang, Y.-H. Duan, Y.-Q. Yang, P. Chen, D. Yang, F.-B. Sun, K.-W. Xue, N. Hu, and J.-W. Hou, Org. Electron. 15, 1936 (2014).Google Scholar
  90. 90.
    H. Seong, J. Choi, B.C. Jang, M. Kim, S. Yoo, S.Y. Choi, and S.G. Im, Adv. Electron. Mater. 2, 1500385 (2016).Google Scholar
  91. 91.
    S. Won, D. Lam, J.Y. Lee, H.-J. Jung, M. Hur, K.-S. Kim, H.-J. Lee, and J.-H. Kim, Nanotechnology 29, 125705 (2018).Google Scholar
  92. 92.
    E.G. Jeong, S. Kwon, J.H. Han, H.-G. Im, B.-S. Bae, and K.C. Choi, Nanoscale 9, 6370 (2017).Google Scholar
  93. 93.
    J.H. Kwon, S. Choi, Y. Jeon, H. Kim, K.S. Chang, and K.C. Choi, ACS Appl. Mater. Interfaces 9, 27062 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Division of Nano-Scale Semiconductor EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations