, Volume 71, Issue 2, pp 791–800 | Cite as

Efficient Removal of Cationic Dyes From Aqueous Solutions Using the Low-Cost Algerian Olive Cake Waste Adsorbent

  • Khadra-Hanane Toumi
  • Yacine BenguerbaEmail author
  • Alessandro Erto
  • Guilherme L. Dotto
  • Chafia Tiar
  • Saci Nacef
  • Abdeltif Amrane
  • Barbara Ernst
Technical Article


The objective of our study was to evaluate the operating conditions for the removal of two dyes used in the textile industry, namely methylene blue (MB) and yellow basic 28 (BY28), from aqueous solutions. To do this, the low-cost agricultural Algerian olive cake waste (AAOCW) was used as an adsorbent. Equilibrium and kinetics tests were performed to define the applicability of this new adsorbent for the removal of selected dyes. The adsorption of the dyes on the AAOCW depends on the nature of the dye, the contact time, the pH, the initial concentration, and the amount of adsorbent. Two kinetic models including pseudo-first order and pseudo-second order were used to analyze the kinetic experimental data. The pseudo-second-order model provides the best results, suggesting that the chemisorption of dyes on the surface of the adsorbent plays an important role in the overall kinetics of the process. Finally, the characterization of the experimental isothermal data of MB and BY28 adsorption on AAOCW was performed using the Langmuir and Freundlich isotherms. Good fit results were obtained. The maximum adsorption capacity in monolayer was 25.98 mg g−1 and 38.95 mg g−1 for MB and BY28, respectively. The proposed adsorbent is a suitable candidate for removing dyes from aqueous media.

Supplementary material

11837_2018_3143_MOESM1_ESM.pdf (424 kb)
Supplementary material 1 (PDF 424 kb)


  1. 1.
    M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater. 177, 70 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Rangabhashiyam, N. Anu, and N. Selvaraju, J. Environ. Chem. Eng. 1, 629 (2013).CrossRefGoogle Scholar
  3. 3.
    A.E. Ofomaja and Y.-S. Ho, Dyes Pigments 74, 60 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Haldorai and J.-J. Shim, Appl. Surf. Sci. 292, 447 (2014).CrossRefGoogle Scholar
  5. 5.
    B.H. Hameed, D.K. Mahmoud, and A.L. Ahmad, Colloids Surf. A 316, 78 (2008).CrossRefGoogle Scholar
  6. 6.
    S.K. Theydan and M.J. Ahmed, J. Anal. Appl. Pyrolysis 97, 116 (2012).CrossRefGoogle Scholar
  7. 7.
    V. Dulman, S.M. Cucu-Man, and J. Hazard, Mater. 162, 1457 (2009).Google Scholar
  8. 8.
    A.S. Franca, L.S. Oliveira, and M.E. Ferreira, Desalination 249, 267 (2009).CrossRefGoogle Scholar
  9. 9.
    M.A.M. Salleh, D.K. Mahmoud, W. Azlina, W.A. Karim, and A. Idris, Desalination 280, 1 (2011).CrossRefGoogle Scholar
  10. 10.
    M.T. Yagub, T.K. Sen, S. Afroze, and H.M. Ang, Adv. Colloid Interface Sci. 209, 172 (2014).CrossRefGoogle Scholar
  11. 11.
    S.A. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, and K. Moutesidis, Desalination 221, 259 (2008).CrossRefGoogle Scholar
  12. 12.
    Q.Y. Yue, B.Y. Gao, Y. Wang, H. Zhang, X. Sun, S.G. Wang, and R.R. Gu, J. Hazard. Mater. 152, 221 (2008).CrossRefGoogle Scholar
  13. 13.
    A.O. Yıldırım, S. Gül, O. Eren, and E. Kuşvuran, CLEAN Soil, Air, Water 39, 795 (2011).CrossRefGoogle Scholar
  14. 14.
    J.H. Ramirez and C.A. Costa, Catalysis 107, 68 (2005).Google Scholar
  15. 15.
    P. Singla, M. Sharma, O.P. Pandey, and K. Singh, Appl. Phys. A 116, 371 (2014).CrossRefGoogle Scholar
  16. 16.
    D.Z. Mijin, M.L.A. Ivić, A.E. Onjia, and B.N. Grgur, Chem. Eng. J. 204–206, 151 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Cao, Y. Hu, J. Sun, and B. Hou, Bioelectrochemistry 79, 71 (2010).CrossRefGoogle Scholar
  18. 18.
    L. Guz, G. Curutchet, R.M.T. Sanchez, and R. Candal, J. Environ. Chem. Eng. 2, 2344 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Balsamo, F. Di Natale, A. Erto, A. Lancia, F. Montagnaro, and L. Santoro, Chem. Eng. J. 207–208, 66 (2012).CrossRefGoogle Scholar
  20. 20.
    Food and Agriculture Organization (FAO), Rome 200 (2016).Google Scholar
  21. 21.
    A. Erto, F. Di Natale, D. Musmarra, and A. Lancia, Adsorption 21, 611 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Uğurlu, A. Gürses, and M. Açıkyıldız, Microporous Mesoporous Mater. 111, 228 (2008).CrossRefGoogle Scholar
  23. 23.
    S. Langergren and B.K. Svenska, Handlingar 24, 1 (1898).Google Scholar
  24. 24.
    Y.S. Ho and G. McKay, Chem. Eng. J. 70, 115 (1998).CrossRefGoogle Scholar
  25. 25.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).CrossRefGoogle Scholar
  26. 26.
    F.H. Freundlich, Z. Phys. Chem. 57, 384 (1906).Google Scholar
  27. 27.
    R. Gong, Y. Sun, J. Chen, H. Liu, and C. Yang, Dyes Pigments 67, 175 (2005).CrossRefGoogle Scholar
  28. 28.
    C. Djilani, R. Zaghdoudi, A. Modarressi, M. Rogalski, F. Djazi, and A. Lallam, Chem. Eng. J. 189–190, 203 (2012).CrossRefGoogle Scholar
  29. 29.
    R. Baccar, J. Bouzid, M. Feki, and A. Montiel, J. Hazard. Mater. 162, 1522 (2009).CrossRefGoogle Scholar
  30. 30.
    Y. Yao, B. He, F. Xu, and X. Chen, Chem. Eng. J. 170, 82 (2011).CrossRefGoogle Scholar
  31. 31.
    R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, Dyes Pigments 64, 187 (2005).CrossRefGoogle Scholar
  32. 32.
    R. Gong, M. Li, C. Yang, Y. Sun, and J. Chen, J. Hazard. Mater. B121, 247 (2005).CrossRefGoogle Scholar
  33. 33.
    U.R. Lakshmi, V.C. Srivastava, I.D. Mall, and D.H. Lataye, J. Environ. Manage. 90, 710 (2009).CrossRefGoogle Scholar
  34. 34.
    K. Rida, S. Bouraoui, and S. Hadnine, Appl. Clay Sci. 83–84, 99 (2013).CrossRefGoogle Scholar
  35. 35.
    B.H. Hameed, D.K. Mahmoud, and A.L. Ahmad, J. Hazard. Mater. 158, 65 (2008).CrossRefGoogle Scholar
  36. 36.
    Z. Aksu and I.A. Isoglu, J. Hazard. Mater. B137, 418 (2006).CrossRefGoogle Scholar
  37. 37.
    H. Parab, CLEAN Soil, Air, Water 37, 963 (2009).CrossRefGoogle Scholar
  38. 38.
    G. Annadurai, R.S. Juang, and D.-J. Lee, J. Hazard. Mater. 92, 263 (2002).CrossRefGoogle Scholar
  39. 39.
    V. Vadivelan and K.V. Kumar, J. Colloid Interface Sci. 286, 90 (2005).CrossRefGoogle Scholar
  40. 40.
    C. Namasivayam, N. Kanchana, and R.T. Yamuna, Waste Manage. 13, 89 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Processes Engineering, Laboratoire de Génie des Procédés ChimiquesUniversité Ferhat AbbasSétifAlgeria
  2. 2.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione IndustrialeUniversità di Napoli Federico IINaplesItaly
  3. 3.Chemical Engineering DepartmentFederal University of Santa Maria–UFSMSanta MariaBrazil
  4. 4.UMR 6226, CNRSEcole Nationale Supérieure de Chimie de RennesRennes Cedex 7France
  5. 5.UMR 7178, CNRS, IPHC, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM)Université de StrasbourgStrasbourgFrance

Personalised recommendations