Advertisement

JOM

, Volume 71, Issue 1, pp 212–223 | Cite as

Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes

  • Ruben Z. Waldman
  • Devika Choudhury
  • David J. Mandia
  • Jeffrey W. Elam
  • Paul F. Nealey
  • Alex B. F. Martinson
  • Seth B. DarlingEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials

Abstract

We report the sequential infiltration synthesis (SIS) of aluminum oxide (Al2O3) into polyethersulfone (PES) ultrafiltration (UF) membranes to form hybrid nanocomposites. SIS relies on chemical interactions between precursor vapors and polymer functional groups, and enables nucleation and growth of inorganic materials to controlled depth. Using in situ Fourier-transform infrared spectroscopy and ellipsometry measurements, we demonstrate that trimethylaluminum associates with the sulfonyl groups in PES, extending the library of SIS-modified polymer nanocomposites to a previously undescribed polymer system and new application space: PES UF membranes. Depth-profiled x-ray photoelectron spectroscopy showed that the trimethylaluminum purge time dictates the extent of Al2O3 infiltration. Energy dispersive spectroscopy revealed the differences between SIS and atomic layer deposition in the membranes. This work demonstrates the viability of SIS to access the entire macroporous volume of PES UF membranes.

Notes

Acknowledgements

Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This material was based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure. Parts of this work were carried out at the Soft Matter Characterization Facility of the University of Chicago. The authors also acknowledge the MRSEC Shared User Facilities at the University of Chicago (NSF DMR-1420709) and the Geophysical Sciences Division at the University of Chicago.

Supplementary material

11837_2018_3142_MOESM1_ESM.pdf (4.4 mb)
Supplementary material 1 (PDF 4509 kb)

References

  1. 1.
    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, Adv. Mater. 22, 5129 (2010).CrossRefGoogle Scholar
  2. 2.
    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, ACS Nano 5, 4600 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Frascaroli, E. Cianci, S. Spiga, G. Seguini, and M. Perego, ACS Appl. Mater. Interfaces 8, 33933 (2016).CrossRefGoogle Scholar
  4. 4.
    M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam, Chem. Mater. 26, 6135 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam, J. Phys. Chem. C 119, 14585 (2015).CrossRefGoogle Scholar
  6. 6.
    B. Gong and G.N. Parsons, J. Mater. Chem. 22, 15672 (2012).CrossRefGoogle Scholar
  7. 7.
    E.C. Dandley, C.D. Needham, P.S. Williams, A.H. Brozena, C.J. Oldham, and G.N. Parsons, J. Mater. Chem. C. 2, 9416 (2014).CrossRefGoogle Scholar
  8. 8.
    C.Z. Leng and M.D. Losego, Mater. Horiz. 4, 747 (2017).CrossRefGoogle Scholar
  9. 9.
    R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A 33, 01A112 (2015).CrossRefGoogle Scholar
  10. 10.
    G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and P.S. Williams, Coord. Chem. Rev. 257, 3323 (2013).CrossRefGoogle Scholar
  11. 11.
    C.-Y. Nam, A. Stein, and K. Kisslinger, J. Vac. Sci. Technol. B 33, 06F201 (2015).CrossRefGoogle Scholar
  12. 12.
    C.-Y. Nam, A. Stein, K. Kisslinger, and C.B. Black, Appl. Phys. Lett. 107, 203106 (2015).CrossRefGoogle Scholar
  13. 13.
    C.-Y. Nam and A. Stein, Adv. Opt. Mater. 5, 1 (2017).Google Scholar
  14. 14.
    J. Yin, Q. Xu, Z. Wang, X. Yao, and Y. Wang, J. Mater. Chem. C 1, 1029 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Ruiz, L. Wan, J. Lille, K.C. Patel, E. Dobisz, D.E. Johnston, K. Kisslinger, and C.B. Black, J. Vac. Sci. Technol. B 30, 06F202 (2012).CrossRefGoogle Scholar
  16. 16.
    D. Berman, S. Guha, B. Lee, J.W. Elam, S.B. Darling, and E.V. Shevchenko, ACS Nano 11, 2521 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Zhou, T. Segal-Peretz, M.E. Oruc, H.S. Suh, G. Wu, and P.F. Nealey, Adv. Funct. Mater. 27, 1701756 (2017).CrossRefGoogle Scholar
  18. 18.
    Y.C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Vac. Sci. Technol. B 29, 06FG01 (2011).CrossRefGoogle Scholar
  19. 19.
    Y.C. Tseng, A.U. Mane, J.W. Elam, and S.B. Darling, Adv. Mater. 24, 2608 (2012).CrossRefGoogle Scholar
  20. 20.
    K.J. Dusoe, X. Ye, K. Kisslinger, A. Stein, S.-W. Lee, and C.-Y. Nam, Nano Lett. 17, 7416 (2017).CrossRefGoogle Scholar
  21. 21.
    H.I. Akyildiz, M. Lo, E. Dillon, A.T. Roberts, H.O. Everitt, and J.S. Jur, J. Mater. Res. 29, 2817 (2014).CrossRefGoogle Scholar
  22. 22.
    E. Barry, J.A. Libera, A.U. Mane, J.R. Avila, D. DeVitis, K. Van Dyke, J.W. Elam, and S.B. Darling, Environ. Sci. Water Res. Technol. 4, 40 (2018).CrossRefGoogle Scholar
  23. 23.
    E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, and S.B. Darling, J. Mater. Chem. A 5, 2929 (2017).CrossRefGoogle Scholar
  24. 24.
    T. Segal-Peretz, J. Winterstein, M. Doxastakis, A. Ramirez-Hernandez, M. Biswas, J. Ren, H.S. Suh, S.B. Darling, J.A. Liddle, J.W. Elam, J.J. de Pablo, N.J. Zaluzec, and P.F. Nealey, ACS Nano 9, 5333 (2015).CrossRefGoogle Scholar
  25. 25.
    G. Liu, M.P. Stoykovich, S. Ji, K.O. Stuen, G.S.W. Craig, and P.F. Nealey, Macromolecules 42, 3063 (2009).CrossRefGoogle Scholar
  26. 26.
    R.B. Rigby, Engineering Thermoplastics: Properties and Applications (New York: Marcel Dekker, 1985).Google Scholar
  27. 27.
    A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, and S. Ismail, Chem. Eng. J. 223, 246 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Zhao, J. Xue, F. Ran, and S. Sun, Prog. Mater. Sci. 58, 76 (2013).CrossRefGoogle Scholar
  29. 29.
    J.F. Li, Z.L. Xu, H. Yang, L.Y. Yu, and M. Liu, Appl. Surf. Sci. 255, 4725 (2009).CrossRefGoogle Scholar
  30. 30.
    N. Maximous, G. Nakhla, K. Wong, and W. Wan, Sep. Purif. Technol. 73, 294 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Simone, F. Galiano, M. Faccini, M. Boerrigter, C. Chaumette, E. Drioli, and A. Figoli, Fibers 5, 14 (2017).CrossRefGoogle Scholar
  32. 32.
    A. Razmjou, J. Mansouri, V. Chen, M. Lim, and R. Amal, J. Membr. Sci. 380, 98 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Chen, L. Kong, and Y. Wang, J. Membr. Sci. 487, 109 (2015).CrossRefGoogle Scholar
  34. 34.
    Q. Xu, Y. Yang, J. Yang, X. Wang, Z. Wang, and Y. Wang, J. Membr. Sci. 443, 62 (2013).CrossRefGoogle Scholar
  35. 35.
    F. Li, L. Li, X. Liao, and Y. Wang, J. Membr. Sci. 385–386, 1 (2011).CrossRefGoogle Scholar
  36. 36.
    Q. Wang, X. Wang, Z. Wang, J. Huang, and Y. Wang, J. Membr. Sci. 442, 57 (2013).CrossRefGoogle Scholar
  37. 37.
    S.J. Yu, J.W. Lim, and J.-H. Lee, Electrochem. Sloid State Lett. 7, C13 (2004).CrossRefGoogle Scholar
  38. 38.
    P.E. Petrochenko, G. Scarel, G.K. Hyde, G.N. Parsons, S.A. Skoog, Q. Zhang, P.L. Goering, and R.J. Narayan, JOM 65, 550 (2013).CrossRefGoogle Scholar
  39. 39.
    T. Cheng, H. Chen, S. Xiong, X. Chen, and Y. Wang, AIChE J. 60, 3614 (2014).CrossRefGoogle Scholar
  40. 40.
    R.Z. Waldamn, H.-C. Yang, D.J. Mandia, P.F. Nealey, J.W. Elam, and S.B. Darling, Adv. Mater. Interfaces 5, 1800658 (2018).CrossRefGoogle Scholar
  41. 41.
    J.W. Elam, J.A. Libera, M.J. Pellin, and P.C. Stair, Appl. Phys. Lett. 91, 177 (2007).Google Scholar
  42. 42.
    W.-H. Lau, M. Guiver, and T. Matsuura, J. Membr. Sci. 59, 219 (1991).CrossRefGoogle Scholar
  43. 43.
    D.J. Comstock and J.W. Elam, J. Phys. Chem. C 117, 1677 (2013).CrossRefGoogle Scholar
  44. 44.
    X. Ye, K. Kisslinger, M. Liu, R.B. Grubbs, J.A. Boscoboinik, and C.-Y. Nam, Chem. Mater. 29, 4535 (2017).CrossRefGoogle Scholar
  45. 45.
    M.J. Frisch, G.W. Trucks, H.B. Schlefel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, B. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. BLoino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Oligaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Ivengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakeen, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT (2009).Google Scholar
  46. 46.
    M. Fontyn, K. van’t Riet, and B.H. Bijsterbosch, Colloids Surf. 54, 331 (1991).CrossRefGoogle Scholar
  47. 47.
    M.L. Mendez, A.I. Romero, V.B. Rajal, E.F. Castro, J.I. Calvo, L. Palacio, and A. Hernandez, Polym. Eng. Sci. 54, 1211 (2014).CrossRefGoogle Scholar
  48. 48.
    J.H. Choi, J. Jegal, and W.N. Kim, J. Membr. Sci. 285, 406 (2006).CrossRefGoogle Scholar
  49. 49.
    D.G. Goldstein, J.A. McCormick, and S.M. George, J. Phys. Chem. C 112, 19530 (2008).CrossRefGoogle Scholar
  50. 50.
    G.A. Atiya, A.S. Grady, D.K. Russell, and T.A. Claxton, Spectrochim. Acta Part A Mol. Spectrosc. 47, 467 (1991).CrossRefGoogle Scholar
  51. 51.
    B.G. Frederick, G. Apai, and T.N. Rhodin, Phys. Rev. B 44, 1880 (1991).CrossRefGoogle Scholar
  52. 52.
    K. Sollia, M. Ystenes, and P. Sobotab, Proc. SPIE 1575, 608 (1991).CrossRefGoogle Scholar
  53. 53.
    Q. Xu, J. Yang, J. Dai, Y. Yang, X. Chen, and Y. Wang, J. Membr. Sci. 448, 215 (2013).CrossRefGoogle Scholar
  54. 54.
    A. Lee, J.A. Libera, R.Z. Waldman, A. Ahmed, J.R. Avila, J.W. Elam, and S.B. Darling, Adv. Sustain. Syst. 1, 1600041 (2017).CrossRefGoogle Scholar
  55. 55.
    A. Yanguas-Gil and J.W. Elam, Chem. Vap. Depos. 18, 46 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ruben Z. Waldman
    • 1
    • 2
  • Devika Choudhury
    • 3
  • David J. Mandia
    • 3
  • Jeffrey W. Elam
    • 3
    • 5
  • Paul F. Nealey
    • 1
    • 4
  • Alex B. F. Martinson
    • 4
  • Seth B. Darling
    • 1
    • 2
    • 5
    Email author
  1. 1.Institute for Molecular EngineeringUniversity of ChicagoChicagoUSA
  2. 2.Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA
  3. 3.Applied Materials DivisionArgonne National LaboratoryLemontUSA
  4. 4.Materials Science DivisionArgonne National LaboratoryLemontUSA
  5. 5.Institute for Molecular EngineeringArgonne National LaboratoryLemontUSA

Personalised recommendations