, Volume 71, Issue 1, pp 185–196 | Cite as

Review of Recent Advances in Applications of Vapor-Phase Material Infiltration Based on Atomic Layer Deposition

  • Ashwanth Subramanian
  • Nikhil Tiwale
  • Chang-Yong NamEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials


Polymer–inorganic hybrid nanocomposites exhibit enhanced material properties, combining the advantages of both their organic and inorganic subcomponents. Extensive research is being carried out to functionalize polymers towards various improved physicochemical characteristics such as electrical, optical, and mechanical properties for various applications. Vapor-phase material infiltration is an emerging hybridization route, derived from atomic layer deposition, which facilitates uniform incorporation of inorganic entities into a polymer matrix, leading to novel applications in fields such as microelectronics, energy storage, smart coatings, and smart fabrics. In this article, recent advances in employing vapor-phase material infiltration as a hybridization and nanopatterning technique for various application avenues are reviewed.



The research was in part carried out at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory (BNL), which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.


  1. 1.
    Y. Zhang, S. Zhuang, X. Xu, and J. Hu, Opt. Mater. 36, 169 (2013).CrossRefGoogle Scholar
  2. 2.
    W.S. Khan, N.N. Hamadneh, and W.A. Khan, Polymer nanocomposites—synthesis techniques, classification and properties, in Science and applications of Tailored Nanostructures, ed. Professor Paolo Di Sia (Cheshire, United Kingdom: One Central Press, 2016), p. 50.Google Scholar
  3. 3.
    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, Adv. Mater. 22, 5129 (2010).CrossRefGoogle Scholar
  4. 4.
    L.E. Ocola, D.J. Gosztola, A. Yanguas-Gil, H.-S. Suh, and A. Connolly, Proc. SPIE 9755, 97552C-1 (2016).CrossRefGoogle Scholar
  5. 5.
    H.I. Akyildiz, R.P. Padbury, G.N. Parsons, and J.S. Jur, Langmuir 28, 15697 (2012).CrossRefGoogle Scholar
  6. 6.
    H.I. Akyildiz, M. Lo, E. Dillon, A.T. Roberts, H.O. Everitt, and J.S. Jur, J. Mater. Res. 29, 2817 (2014).CrossRefGoogle Scholar
  7. 7.
    S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C.V. Chandran, T. Bräuniger, G. Hause, and M. Knez, Science 324, 488 (2009).CrossRefGoogle Scholar
  8. 8.
    S.M. Lee, E. Pippel, O. Moutanabbir, I. Gunkel, T. Thurn-Albrecht, and M. Knez, ACS Appl. Mater. Interfaces 2, 2436 (2010).CrossRefGoogle Scholar
  9. 9.
    C.Z. Leng and M.D. Losego, Mater. Horizons 4, 747 (2017).CrossRefGoogle Scholar
  10. 10.
    K. Gregorczyk and M. Knez, Prog. Mater Sci. 75, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and P.S. Williams, Coord. Chem. Rev. 257, 3323 (2013).CrossRefGoogle Scholar
  12. 12.
    C.T. Black, K.W. Guarini, R. Ruiz, E.M. Sikorski, I.V. Babich, R.L. Sandstrom, and Y. Zhang, IBM J. Res. Dev. 51, 605 (2006).CrossRefGoogle Scholar
  13. 13.
    E. Mills, J. Cannarella, Q. Zhang, S. Bhadra, C.B. Arnold, and S.Y. Chou, J. Vac. Sci. Technol., B 32, 06FG10 (2014).CrossRefGoogle Scholar
  14. 14.
    H.W. Ra, K.S. Choi, J.H. Kim, Y.B. Hahn, and Y.H. Im, Small 4, 1105 (2008).CrossRefGoogle Scholar
  15. 15.
    J. Guan, N. Ferrell, L. James Lee, and D.J. Hansford, Biomaterials 27, 4034 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Chen, Microelectron. Eng. 135, 57 (2015).CrossRefGoogle Scholar
  17. 17.
    R.A. Segalman, Mater. Sci. Eng. R Rep. 48, 191 (2005).CrossRefGoogle Scholar
  18. 18.
    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, ACS Nano 5, 4600 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Kamcev, D.S. Germack, D. Nykypanchuk, R.B. Grubbs, C.Y. Nam, and C.T. Black, ACS Nano 7, 339 (2013).CrossRefGoogle Scholar
  20. 20.
    A. Rahman, P.W. Majewski, G. Doerk, C.T. Black, and K.G. Yager, Nat. Commun. 7, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    Y.-C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Mater. Chem. 21, 11722 (2011).CrossRefGoogle Scholar
  22. 22.
    Y.-C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Vac. Sci. Technol., B 29, 06FG01 (2011).CrossRefGoogle Scholar
  23. 23.
    Y.C. Tseng, Q. Peng, L.E. Ocola, J.W. Elam, and S.B. Darling, J. Phys. Chem. C 115, 17725 (2011).CrossRefGoogle Scholar
  24. 24.
    C.-Y. Nam, A. Stein, and K. Kisslinger, J. Vac. Sci. Technol., B 33, 06F201 (2015).CrossRefGoogle Scholar
  25. 25.
    E.C. Dandley, P.C. Lemaire, Z. Zhu, A. Yoon, L. Sheet, and G.N. Parsons, Adv. Mater. Interfaces 4, 1 (2017).CrossRefGoogle Scholar
  26. 26.
    C.-Y. Nam, A. Stein, K. Kisslinger, and C.T. Black, Appl. Phys. Lett. 107, 203106 (2015).CrossRefGoogle Scholar
  27. 27.
    C.Y. Nam and A. Stein, Adv. Opt. Mater. 5, 1700807 (2017).CrossRefGoogle Scholar
  28. 28.
    B. Gong, D.H. Kim, and G.N. Parsons, Langmuir 28, 11906 (2012).CrossRefGoogle Scholar
  29. 29.
    D. Berman, S. Guha, B. Lee, J.W. Elam, S.B. Darling, and E.V. Shevchenko, ACS Nano 11, 2521 (2017).CrossRefGoogle Scholar
  30. 30.
    A. Rahman, M. Liu, and C. T. Black, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 06FE02 (2014).Google Scholar
  31. 31.
    A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M.D. Eisaman, and C.T. Black, Nat. Commun. 6, 1 (2015).CrossRefGoogle Scholar
  32. 32.
    A.C. Liapis, A. Rahman, and C.T. Black, Appl. Phys. Lett. 111, 183901 (2017).CrossRefGoogle Scholar
  33. 33.
    A. Checco, A. Rahman, and C.T. Black, Adv. Mater. 26, 886 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Checco, B.M. Ocko, A. Rahman, C.T. Black, M. Tasinkevych, A. Giacomello, and S. Dietrich, Phys. Rev. Lett. 112, 216101 (2014).CrossRefGoogle Scholar
  35. 35.
    B. Gong, J.C. Spagnola, and G.N. Parsons, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 30, 01A156 (2012).Google Scholar
  36. 36.
    S. Greil, A. Rahman, M. Liu, and C.T. Black, Chem. Mater. 29, 9572 (2017).CrossRefGoogle Scholar
  37. 37.
    H.M. Shanshool, M. Yahaya, W.M.M. Yunus, and I.Y. Abdullah, AIP Conf. Proc. 76, 136 (2014).CrossRefGoogle Scholar
  38. 38.
    D. Japić, I. Djerdj, M. Marinšek, and Z.C. Orel, Acta Chim. Slov. 60, 797 (2013).Google Scholar
  39. 39.
    D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, and D.S. Ginley, Thin Solid Films 496, 26 (2006).CrossRefGoogle Scholar
  40. 40.
    L.E. Ocola, A. Connolly, D.J. Gosztola, R.D. Schaller, and A. Yanguas-Gil, J. Phys. Chem. C 121, 1893 (2017).CrossRefGoogle Scholar
  41. 41.
    J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006).CrossRefGoogle Scholar
  42. 42.
    H.I. Akyildiz, K.L. Stano, A.T. Roberts, H.O. Everitt, and J.S. Jur, Langmuir 32, 4289 (2016).CrossRefGoogle Scholar
  43. 43.
    Y. Yu, Z. Li, Y. Wang, S. Gong, and X. Wang, Adv. Mater. 27, 4938 (2015).CrossRefGoogle Scholar
  44. 44.
    Y. Yu and X. Wang, Extrem. Mech. Lett. 9, 514 (2016).CrossRefGoogle Scholar
  45. 45.
    Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).CrossRefGoogle Scholar
  46. 46.
    S.M. Lee, E. Pippel, O. Moutanabbir, J.H. Kim, H.J. Lee, and M. Knez, ACS Appl. Mater. Interfaces 6, 16827 (2014).CrossRefGoogle Scholar
  47. 47.
    K.E. Gregorczyk, D.F. Pickup, M.G. Sanz, I.A. Irakulis, C. Rogero, and M. Knez, Chem. Mater. 27, 181 (2015).CrossRefGoogle Scholar
  48. 48.
    R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 33, 01A112 (2015).Google Scholar
  49. 49.
    Q.P. Unterreithmeier, T. Faust, and J.P. Kotthaus, Phys. Rev. Lett. 105, 1 (2010).CrossRefGoogle Scholar
  50. 50.
    S. Ramesh, S. Khandelwal, K.Y. Rhee, and D. Hui, Compos. Part B Eng. 138, 45 (2018).CrossRefGoogle Scholar
  51. 51.
    P. He, K. Zhao, B. Huang, B. Zhang, Q. Huang, T. Chen, and Q. Zhang, J. Mater. Sci. 53, 4482 (2018).CrossRefGoogle Scholar
  52. 52.
    S. Kim, S. Hyun, J. Lee, K.S. Lee, W. Lee, and J.K. Kim, Adv. Funct. Mater. 28, 1800197 (2018).CrossRefGoogle Scholar
  53. 53.
    K.J. Dusoe, X. Ye, K. Kisslinger, A. Stein, S.W. Lee, and C.Y. Nam, Nano Lett. 17, 7416 (2017).CrossRefGoogle Scholar
  54. 54.
    E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, and S.B. Darling, J. Mater. Chem. A 5, 2929 (2017).CrossRefGoogle Scholar
  55. 55.
    A. Facchetti, Chem. Mater. 23, 733 (2011).CrossRefGoogle Scholar
  56. 56.
    W. Wang, C. Chen, C. Tollan, F. Yang, Y. Qin, and M. Knez, J. Mater. Chem. C 5, 2686 (2017).CrossRefGoogle Scholar
  57. 57.
    S. Obuchovsky, I. Deckman, M. Moshonov, T. Segal Peretz, G. Ankonina, T.J. Savenije, and G.L. Frey, J. Mater. Chem. C 2, 8903 (2014).CrossRefGoogle Scholar
  58. 58.
    M. Moshonov and G.L. Frey, Langmuir 31, 12762 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Chemical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations