Advertisement

JOM

, Volume 71, Issue 1, pp 246–255 | Cite as

Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances

  • Si Joon Kim
  • Jaidah Mohan
  • Scott R. Summerfelt
  • Jiyoung KimEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials
  • 445 Downloads

Abstract

Ferroelectricity in HfO2-based materials, especially Hf0.5Zr0.5O2 (HZO), is today one of the most attractive topics because of its wide range of applications in ferroelectric random-access memory, ferroelectric field-effect transistors, ferroelectric tunneling junctions, steep-slope devices, and synaptic devices. The main reason for this increasing interest is that, when compared with conventional ferroelectric materials, HZO is compatible with complementary metal–oxide–semiconductor flow [even back-end of the line thermal budget] and can exhibit robust ferroelectricity even at extremely thin (< 10 nm) thicknesses. In this report, recent advances in the ferroelectric properties of HZO thin films since the first report in 2011, including doping effects, mechanical stress effects, interface effects, and ferroelectric film thickness effects, are comprehensively reviewed.

Notes

Acknowledgements

This work was financially supported by Texas Instruments. We acknowledge Drs. L. Colombo and T. San for valuable discussion and comments, and thank Toshiba-Mitsubishi-Electric Industrial Systems Corporation (TMEIC) for providing ozone generator.

References

  1. 1.
    J.A. Rodrigues, K. Remack, K. Boku, K.R. Udayakumar, S. Aggarwal, S.R. Summerfelt, F.G. Celii, S. Martin, L. Hall, K. Taylor, T. Moise, H. McAdams, J. McPherson, R. Bailey, G. Fox, and M. Depner, IEEE Trans. Device Mater. Reliab. 4, 436 (2004).Google Scholar
  2. 2.
    H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason, J. Fong, W.F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N. Qian, Y. Qiu, K.A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, and S.R. Summerfelt, IEEE J. Solid-State Circuit 39, 667 (2004).Google Scholar
  3. 3.
    J.A. Rodriguez, C. Zhou, T. Graf, R. Bailey, M. Wiegand, T. Wang, M. Ball, H.C. Wen, K.R. Udayakumar, S. Summerfelt, T. San, T. Moise, in Proceedings of 8th IEEE International Memory Workshop (IMW) (2016).Google Scholar
  4. 4.
    S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, C.D. Young, J. Kim, S.R. Summerfelt, T. San, and L. Colombo, in Proceedings of 9th IEEE International Memory Workshop (IMW) (2017).Google Scholar
  5. 5.
    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).Google Scholar
  6. 6.
    J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Boschke, R. van Bentum, U. Schröder, and T. Mikolajick, in Proceedings of 59th IEEE International Electron Devices Meeting (IEDM) (2013).Google Scholar
  7. 7.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang, Adv. Mater. 27, 1811 (2015).Google Scholar
  8. 8.
    J. Müller, P. Polakowski, S. Mueller, and T. Mikolajick, ECS J. Solid State Sci. Technol. 4, N30 (2015).Google Scholar
  9. 9.
    K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006).Google Scholar
  10. 10.
    D. Fischer and A. Kersch, Appl. Phys. Lett. 92, 012908 (2008).Google Scholar
  11. 11.
    J. Müller, T.S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Fery, Appl. Phys. Lett. 99, 112901 (2011).Google Scholar
  12. 12.
    J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).Google Scholar
  13. 13.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, H.K. Kim, and C.S. Hwang, Appl. Phys. Lett. 102, 112914 (2013).Google Scholar
  14. 14.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, and C.S. Hwang, Appl. Phys. Lett. 102, 242905 (2013).Google Scholar
  15. 15.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Jeon, T. Moon, and C.S. Hwang, Phys. Status Solidi RRL 8, 532 (2014).Google Scholar
  16. 16.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, and C.S. Hwang, Appl. Phys. Lett. 104, 072901 (2014).Google Scholar
  17. 17.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, K.D. Kim, and C.S. Hwang, Appl. Phys. Lett. 105, 072902 (2014).Google Scholar
  18. 18.
    T. Shimizu, T. Yokouchi, T. Shiraishi, T. Oikawa, P.S.S.R. Krishnan, and H. Funakubo, Jpn. J. Appl. Phys. 53, 09PA04 (2014).Google Scholar
  19. 19.
    H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, and C.S. Hwang, Appl. Phys. Lett. 105, 192903 (2014).Google Scholar
  20. 20.
    X. Zhang, L. Chen, Q.-Q. Sun, L.-H. Wang, P. Zhou, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D.W. Zhang, Nanoscale Res. Lett. 10, 1 (2015).Google Scholar
  21. 21.
    T. Shimizu, T. Yokouchi, T. Oikawa, T. Shiraishi, T. Kiguchi, A. Akama, T.J. Konno, A. Gruveman, and H. Funakubo, Appl. Phys. Lett. 106, 112904 (2015).Google Scholar
  22. 22.
    R. Materlik, C. Künneth, and A. Kersch, J. Appl. Phys. 117, 134109 (2015).Google Scholar
  23. 23.
    A. Chernikova, M. Kozodaev, A. Markeev, Y. Matveev, D. Negrov, and O. Orlov, Microelectron. Eng. 147, 15 (2015).Google Scholar
  24. 24.
    M.H. Lee, Y.-T. Wei, C. Liu, J.-J. Huang, M. Tang, Y.-L. Chueh, K.-Y. Chu, M.-J. Chen, H.-Y. Lee, Y.-S. Chen, L.-H. Lee, and M.-J. Tsai, J. Electron Devices Soc. 3, 377 (2015).Google Scholar
  25. 25.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, and C.S. Hwang, J. Mater. Chem. C 3, 6291 (2015).Google Scholar
  26. 26.
    D.R. Islamov, A.G. Chernikova, M.G. Kozodaev, A.M. Markeev, T.V. Perevalov, V.A. Gritsenko, and O.M. Orlov, JETP Lett. 102, 544 (2015).Google Scholar
  27. 27.
    M.H. Park, H.J. Kim, Y.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, and C.S. Hwang, Appl. Phys. Lett. 107, 192907 (2015).Google Scholar
  28. 28.
    J. Müller, P. Polakowski, J. Paul, S. Riedel, R. Hoffmann, M. Drescher, S. Slesazeck, S. Müller, H. Mulaosmanovic, U. Schroeder, T. Mikolajick, S. Flachowsky, E. Erben, E. Smith, R. Binder, D. Triyoso, J. Metzger, and S. Kolodinski, ECS Trans. 69, 85 (2015).Google Scholar
  29. 29.
    M. H. Lee, P.-G. Chen, C. Liu, K.-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, in Proceedings of 61th IEEE International Electron Devices Meeting (IEDM) (2015).Google Scholar
  30. 30.
    Y. Yan, D. Zhou, C. Guo, J. Xu, X. Yang, H. Liang, F. Zhou, S. Chu, and X. Liu, J. Sol-Gel. Sci. Technol. 77, 430 (2016).Google Scholar
  31. 31.
    H.J. Kim, M.H. Park, T.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, and C.S. Hwang, Nanoscale 8, 1383 (2016).Google Scholar
  32. 32.
    M.H. Park, H.J. Kim, Y.H. Lee, Y.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, and C.S. Hwang, Nanoscale 8, 13898 (2016).Google Scholar
  33. 33.
    A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruvernan, A. Zenkevich, and A.C.S. Appl, Mater. Interfaces 8, 2732 (2016).Google Scholar
  34. 34.
    M.H. Park, H.J. Kim, Y.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, F. Fengler, U. Schroeder, C.S. Hwang, and A.C.S. Appl, Mater. Interfaces 8, 15466 (2016).Google Scholar
  35. 35.
    T. Kiguchi, S. Nakamura, A. Akama, T. Shiraichi, and T.J. Konno, J. Ceram. Soc. Jpn. 6, 689 (2016).Google Scholar
  36. 36.
    Y.W. Lu, J. Shieh, and F.Y. Tsai, Acta Mater. 115, 68 (2016).Google Scholar
  37. 37.
    Z. Fan, J. Xiao, J. Wang, L. Zhang, J. Deng, Z. Liu, Z. Dong, J. Wang, and J. Chen, Appl. Phys. Lett. 108, 232905 (2016).Google Scholar
  38. 38.
    T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T.J. Konno, and H. Funakubo, Appl. Phys. Lett. 108, 262904 (2016).Google Scholar
  39. 39.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, and C.S. Hwang, Adv. Mater. 28, 7956 (2016).Google Scholar
  40. 40.
    S. Riedel, P. Polakowski, and J. Müller, AIP Adv. 6, 095123 (2016).Google Scholar
  41. 41.
    S. Zarubin, E. Suvorova, M. Spiridonov, D. Negrov, A. Chernikova, A. Markeev, and A. Zenkevich, Appl. Phys. Lett. 109, 192903 (2016).Google Scholar
  42. 42.
    M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, in Proceedings of 62th IEEE International Electron Devices Meeting (IEDM) (2016).Google Scholar
  43. 43.
    J. Zhou, G. Han, Q. Li, Y. Peng, X. Lu, C. Zhang, J. Zhang, Q.-Q. Sun, D. W. Zhang, and Y. Hao, in Proceedings of 62th IEEE International Electron Devices Meeting (IEDM) (2016).Google Scholar
  44. 44.
    J.Y. Lee, G. Annop, H.J. Lee, J.H. Kwak, and J.Y. Jo, Curr. Appl. Phys. 17, 704 (2017).Google Scholar
  45. 45.
    T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T.J. Konno, and H. Funakubo, Mater. Sci. Semicond. Process. 70, 239 (2017).Google Scholar
  46. 46.
    S.W. Smith, A.R. Kitahara, M.A. Rodriguez, M.D. Henry, M.T. Brumbach, and J.F. Ihlefeld, Appl. Phys. Lett. 110, 072901 (2017).Google Scholar
  47. 47.
    F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yáñez, M.A. Gauthier, and A. Ruediger, Appl. Phys. Lett. 110, 093106 (2017).Google Scholar
  48. 48.
    M. Dragoman, M. Aldrigo, M. Modreanu, and D. Dragoman, Appl. Phys. Lett. 110, 103104 (2017).Google Scholar
  49. 49.
    M.G. Kozodaev, Y.Y. Lebedinskii, A.G. Chernikova, S.N. Polyakov, and A.M. Markeev, Phys. Status Solidi A 214, 1700056 (2017).Google Scholar
  50. 50.
    S.L. Weeks, A. Pal, V.K. Narasimhan, K.A. Littau, T. Chiang, and A.C.S. Appl, Mater. Interfaces 9, 13440 (2017).Google Scholar
  51. 51.
    S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I.K. Yoo, and H. Hwang, IEEE Electron Device Lett. 38, 732 (2017).Google Scholar
  52. 52.
    S. Starschich, T. Schenk, U. Schroeder, and U. Boettger, Appl. Phys. Lett. 110, 182905 (2017).Google Scholar
  53. 53.
    T. Mittmann, F.P.G. Fengler, C. Richter, M.H. Park, T. Mikolajick, and U. Schroeder, Microelectron. Eng. 178, 48 (2017).Google Scholar
  54. 54.
    A. Chouprik, A. Chernikova, A. Markeev, V. Mikheev, D. Negrov, M. Spiridonov, S. Zrubin, and A. Zenkevich, Microelectron. Eng. 178, 250 (2017).Google Scholar
  55. 55.
    C. Künneth, R. Materlik, and A. Kersch, J. Appl. Phys. 121, 205304 (2017).Google Scholar
  56. 56.
    M.H. Park, Y.H. Lee, H.J. Kim, T. Schenk, W. Lee, K.D. Kim, F.P.G. Fengler, T. Mikolajick, U. Schroeder, and C.S. Hwang, Nanoscale 9, 9973 (2017).Google Scholar
  57. 57.
    Y.H. Lee, H.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, H.W. Park, Y.B. Lee, M.H. Park, and C.S. Hwang, Nanotechnology 28, 305703 (2017).Google Scholar
  58. 58.
    F.A. McGuire, Y.-C. Lin, K. Price, G.B. Rayner, S. Khandelwal, S. Salahuddin, and A.D. Franklin, Nano Lett. 17, 4801 (2017).Google Scholar
  59. 59.
    T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Chikyow, and A. Ogura, Appl. Phys. Express 10, 0081501 (2017).Google Scholar
  60. 60.
    G. Karbasian, R. Reis, A.K. Yadav, A.J. Tan, C. Hu, and S. Salahuddin, Appl. Phys. Lett. 111, 022907 (2017).Google Scholar
  61. 61.
    A. Sharma and K. Roy, IEEE Electron Device Lett. 38, 1165 (2017).Google Scholar
  62. 62.
    Y. Li, R. Liang, J. Wang, Y. Zhang, H. Tian, H. Liu, S. Li, W. Mao, Y. Pang, Y. Li, Y. Yang, and T.-L. Ren, J. Electron Devices Soc. 5, 378 (2017).Google Scholar
  63. 63.
    M. Dragoman, M. Modreanu, I.M. Povey, S. Iordanescu, M. Aldrigo, C. Romanitan, D. Vasilache, A. Dinescu, and D. Dragoman, Nanotechnology 28, 38LT04 (2017).Google Scholar
  64. 64.
    K. Chatterjee, S. Kim, G. Karbasian, A.J. Tan, A.K. Yadav, A.I. Khan, C. Hu, and S. Salahuddin, IEEE Electron Device Lett. 38, 1379 (2017).Google Scholar
  65. 65.
    Y. Matveyev, D. Negrov, A. Chernikova, Y. Lebedinskii, R. Kirtaev, S. Zarubin, E. Suvorova, A. Gloskovskii, A. Zenkevich, and A.C.S. Appl, Mater. Interfaces 9, 43370 (2017).Google Scholar
  66. 66.
    S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.-C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, and J. Kim, Appl. Phys. Lett. 111, 242901 (2017).Google Scholar
  67. 67.
    S.V. Barabash, D. Pramanik, Y. Zhai, B. Magyari-Kope, and Y. Nishi, ECS Trans. 75, 107 (2017).Google Scholar
  68. 68.
    D.R. Islamov, A.G. Chernikova, M.G. Kozodaev, T.V. Perevalov, B.A. Gritsenko, O.M. Orlov, and A.V. Markeev, ECS Trans. 75, 123 (2017).Google Scholar
  69. 69.
    S. Migita, ECS Trans. 80, 247 (2017).Google Scholar
  70. 70.
    G. Karbasian, A. Tan, A. Yadav, E. M. H. Sorensen, C. R. Serrao, A. I. Khan, K. Chatterjee, S. Kim, C. Hu, and S. Salahuddin, in Proceedings of IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) (2017). Google Scholar
  71. 71.
    M.H. Lee, P.-G. Chen, S.-T. Fan, C.-Y. Kuo, H.-H. Chen, S.-S. Gu, Y.-C. Chou, C.-H. Tang, R.-C. Hong, Z.-Y. Wang, M.-H. Liao, K.-S. Li, M.-C. Chen, and C. W. Liu, in Proceedings of IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), (2017). Google Scholar
  72. 72.
    K.-Y. Chen, P.-H. Chen, and Y.-H. Yu, in Proceedings of IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) (2017).Google Scholar
  73. 73.
    C.-J. Su, Y.-T. Tang, Y.-C. Tsou, P.-J. Sung, F.-J. Hou, C.-J. Wang, S.-T. Chung, C.-Y. Hsiech, Y.-S. Yeh, F.-K. Hsueh, K.-H. Kao, S.-S. Chuang, C.-T. Wu, T.-Y. You, Y.-L. Jian, T.-H. Chou, Y.-L. Shen, B.-Y. Chen, G.-L. Luo, T.-C. Hong, K.-P. Huang, M.-C. Chen, Y.-J. Lee, T.-S. Chao, T.-Y. Tseng, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, in Proceedings of IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) (2017).Google Scholar
  74. 74.
    M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, in Proceedings of 63th IEEE International Electron Devices Meeting (IEDM) (2017).Google Scholar
  75. 75.
    W. Chung, M. Si, and P. D. Ye, in Proceedings of 63th IEEE International Electron Devices Meeting (IEDM) (2017).Google Scholar
  76. 76.
    M. Si, C. Jiang, C.-J. Su, Y.-T. Tang, L. Yang, W. Chung, M. A. Alam, and P. D. Ye, in Proceedings of 63th IEEE International Electron Devices Meeting (IEDM) (2017).Google Scholar
  77. 77.
    D.R. Islamov, A.G. Chernikova, M.G. Kozodaev, A.M. Markeev, T.V. Perevalov, V.A. Gritsenko, and O.M. Orlov, J. Phys.: Conf. Series 864, 012002 (2017).Google Scholar
  78. 78.
    K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, and Y.-H. Wu, IEEE Electron Device Lett. 39, 87 (2018).Google Scholar
  79. 79.
    T.V. Perevalov, V.A. Gritsenko, D.R. Islamov, and I.P. Prosvirin, JETP Lett. 107, 55 (2018).Google Scholar
  80. 80.
    M. Si, C.-J. Su, C. Jiang, N.J. Conrad, H. Zhou, K.D. Maize, G. Qiu, C.-T. Wu, A. Shakouri, M.A. Alam, and P.D. Ye, Nat. Nanotech. 13, 24 (2018).Google Scholar
  81. 81.
    Y.-C. Lin, F. McGuire, and A.D. Franklin, J. Vac. Sol. Technol. B 36, 011204 (2018).Google Scholar
  82. 82.
    A.J. Tan, A.K. Yadav, K. Chatterjee, D. Kwon, S. Kim, C. Hu, and S. Salahuddin, IEEE Electron Device Lett. 39, 95 (2018).Google Scholar
  83. 83.
    A.G. Chernikova, M.G. Kozodaev, D.V. Negrov, E.V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, A.M. Markeev, and A.C.S. Appl, Mater. Interfaces 10, 2701 (2018).Google Scholar
  84. 84.
    J. Li, J. Zhou, G. Han, Y. Liu, Y. Peng, J. Zhang, Q.-Q. Sun, D.W. Zhang, Y. Hao, and I.E.E.E. Trans, Electron Devices 65, 1217 (2018).Google Scholar
  85. 85.
    A. Chouprik, S. Zakharchenko, M. Spiridonov, S. Zarubin, A. Chernikova, R. Kirtaev, P. Buragohain, A. Gruverman, A. Zenkevich, D. Negrov, and A.C.S. Appl, Mater. Interfaces 10, 8818 (2018).Google Scholar
  86. 86.
    K. Jang, N. Ueyama, M. Kobayashi, and T. Hiramoto, J. Electron Devices Soc. 6, 346 (2018).Google Scholar
  87. 87.
    T. Kim, J. Park, B.-H. Cheong, and S. Jeon, Appl. Phys. Lett. 112, 092906 (2018).Google Scholar
  88. 88.
    S. Migita, H. Ota, H. Yamada, K. Shibuya, A. Sawa, and A. Toriumi, Jpn. J. Appl. Phys. 57, 04FB01 (2018).Google Scholar
  89. 89.
    Z. Dong, X. Cao, T. Wu, and J. Guo, J. Appl. Phys. 123, 094501 (2018).Google Scholar
  90. 90.
    J. Xu, S.-Y. Jiang, M. Zhang, H. Zhu, L. Chen, Q.-Q. Sun, and D.W. Zhang, Appl. Phys. Lett. 112, 103104 (2018).Google Scholar
  91. 91.
    T.V. Perevalov, D.R. Islamov, V.A. Gritsenko, and I.P. Prosvirin, Nanotechnology 29, 194001 (2018).Google Scholar
  92. 92.
    H. Bi, Q. Sun, X. Zhao, W. You, D.W. Zhang, and R. Che, Appl. Phys. Lett. 112, 143503 (2018).Google Scholar
  93. 93.
    T. Kim, S. Jeon, and I.E.E.E. Trans, Electron Devices 65, 1771 (2018).Google Scholar
  94. 94.
    S.J. Kim, J. Mohan, J. Lee, J.S. Lee, A.T. Lucero, C.D. Young, L. Colombo, S.R. Summerfelt, T. San, and J. Kim, Appl. Phys. Lett. 112, 172902 (2018).Google Scholar
  95. 95.
    G. Walters, A. Shekhawat, N.G. Rudawski, S. Moghaddam, and T. Nishida, Appl. Phys. Lett. 112, 192901 (2018).Google Scholar
  96. 96.
    K. Ni, P. Sharma, J. Zhang, M. Jerry, J.A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, IEEE Trasn. Electron Devices 65, 2461 (2018).Google Scholar
  97. 97.
    F.P.G. Fengler, M. Hoffmann, S. Slesazeck, T. Mikolajick, and U. Schroeder, J. Appl. Phys. 123, 204101 (2018).Google Scholar
  98. 98.
    T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, X. Thrun, N. Hanisch, P. Steinke, J. Calvo, and J. Müller, Appl. Phys. Lett. 112, 222903 (2018).Google Scholar
  99. 99.
    S. . Kim, J. Mohan, C.D. Young, L. Colombo, J. Kim, S.R. Summerfelt, and T. San, in Proceedings of 10th IEEE International Memory Workshop (IMW) (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Si Joon Kim
    • 1
  • Jaidah Mohan
    • 2
  • Scott R. Summerfelt
    • 3
  • Jiyoung Kim
    • 2
    Email author
  1. 1.Department of Electrical and Electronics EngineeringKangwon National UniversityChuncheonRepublic of Korea
  2. 2.Department of Materials Science and EngineeringThe University of Texas at DallasRichardsonUSA
  3. 3.Texas InstrumentsDallasUSA

Personalised recommendations