, Volume 71, Issue 2, pp 779–783 | Cite as

The Effect of Pseudomonas fluorescens on the Corrosion Morphology of Archaeological Tin Bronze Analogues

  • G. GhiaraEmail author
  • L. Repetto
  • P. Piccardo
Technical Article: Archaeomaterials


This work focuses on the localized forms of corrosion caused by microbiological activity, which have seldom been considered for long-term alteration processes of copper-based alloys. To reproduce a seldom-documented corrosion morphology found in some archaeological objects, called ‘tentacle like’, a Pseudomonas fluorescens strain was used on analogues of known composition in a solution containing sulfates, carbonates, nitrates and chlorides. The effect of such bacteria has already been assessed in a previous study, and a localized type of corrosion was defined. The results show that, when a biofilm grows on the surface of the samples, pits are observed under the corrosion products, while in the presence of chloride ions, these pits propagate under the metallic surface and into the matrix, forming uncommon morphologies ascribed to the type “tentacle like”.



We thank American Journal Experts (AJE) for English language editing.

Supplementary material

11837_2018_3138_MOESM1_ESM.pdf (475 kb)
Supplementary material 1 (PDF 474 kb)


  1. 1.
    D.A. Scott, Copper and Bronze in Art: Corrosion Colorants Conservation (Los Angeles: Getty Publications, 2002).Google Scholar
  2. 2.
    R.F. Tylecote, J. Archaeol. Sci. 6, 345 (1979).CrossRefGoogle Scholar
  3. 3.
    M.C. Bernard and S. Joiret, Electrochim. Acta 54, 5199 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Robbiola, J.M. Blengino, and C. Fiaud, Corros. Sci. 40, 2083–2111 (1998).CrossRefGoogle Scholar
  5. 5.
    C. Pearson, eds., Conservation of Marine Archaeological Objects (London: Butterworths, 1987).Google Scholar
  6. 6.
    D.A. Scott, J. Am. Inst. Conserv 29, 193 (1990).CrossRefGoogle Scholar
  7. 7.
    P. Piccardo B. Mille, and L. Robbiola, in P. Dillmann, G. Beranger, P. Piccardo, and H. Matthiesen (eds) Corrosion of Metallic Heritage ArtefactsInvestigation, Conservation and Prediction of Long-Term Behaviour (Woodhead, Cambridge, 2007) p. 239.Google Scholar
  8. 8.
    J. Redondo-Marugán, J. Piquero-Cilla, M.T. Doménech-Carbó, B. Ramírez-Barat, W. Al Sekhaneh, S. Capelo, and A. Doménech-Carbó, Electrochim. Acta 246, 269 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Bethencourt, T. Fernández-Montblanc, A. Izquierdo, M.M. González-Duarte, and C. Muñoz-Mas, Sci. Total Environm. 613–614, 98 (2018).CrossRefGoogle Scholar
  10. 10.
    M.P. Casaletto, T. De Caro, G.M. Ingo, and C. Riccucci, Appl. Phys. A 83, 611 (2006).CrossRefGoogle Scholar
  11. 11.
    A.M. Pollard, R.G. Thomas, and P.A. Williams, Stud. Conserv. 35, 148 (1990).Google Scholar
  12. 12.
    D.A. Scott, Stud. Conserv. 45, 39 (2000).Google Scholar
  13. 13.
    I.D. Macleod, J. Electroan Chme Interf Electrochem. 118, 291 (1981).CrossRefGoogle Scholar
  14. 14.
    R.F. Tylecote, Int. J. Nautical Archaeol. Underwater Explor. 6, 269 (1977).CrossRefGoogle Scholar
  15. 15.
    A. Sanchez del Junco, D.A. Moreno, C. Ranninger, J.J. Ortega-Calvo, and C. Saiz-Jimenez, Int. Biodet. Biodegrad. 29, 367 (1992).CrossRefGoogle Scholar
  16. 16.
    C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran, J.A. Bourdoiseau, R. Sabot, M. Jeannin, H. Matthiesen, P. Dillmann, and P. Refait, J. Raman Spectrosc. 41, 1425 (2010).CrossRefGoogle Scholar
  17. 17.
    M.B. McNeil and B.J. Little, J. Am. Inst. Cons. 38, 186 (1999).CrossRefGoogle Scholar
  18. 18.
    C. Rémazeilles, A. Dheilly, S. Sable, I. Lanneluc, D. Neff, and P. Refait, CEST 45, 388 (2010).CrossRefGoogle Scholar
  19. 19.
    G.M. Ingo, T. de Caro, C. Riccucci, and S. Khosroff, Appl. Phys. A 83, 581 (2006).CrossRefGoogle Scholar
  20. 20.
    P. Piccardo, M. Mödlinger, G. Ghiara, S. Campodonico, and V. Bongiorno, Appl. Phys. A 13, 1039 (2013).CrossRefGoogle Scholar
  21. 21.
    G. Ghiara, C. Grande, S. Ferrando, and P. Piccardo, JOM 70, 81 (2018). Scholar
  22. 22.
    L.A. Giannuzzi and F.A. Stevie, eds., Introduction to Focused ion Beams. Instrumentation, Theory, Techniques and Practice (Boston: Springer Science and Business Media Inc., 2005).Google Scholar
  23. 23.
    L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).CrossRefGoogle Scholar
  24. 24.
    G. Characklis and K.C. Marshall, Biofilms (New York: Wiley, 1990).Google Scholar
  25. 25.
    B.J. Little, J.S. Lee, and R.I. Ray, Corrosion (Houston: NACE International, 2006).Google Scholar
  26. 26.
    X.C. Chen, W.X. Wu, J.Y. Shi, X.H. Xu, H. Wang, and Y.X. Chen, Colloids Surf. B 54, 46 (2001).CrossRefGoogle Scholar
  27. 27.
    F. Ammeloot, C. Fiaud, and E.M.M. Sutter, Electrochim. Acta 44, 2549 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica Industriale - DCCIUniversità degli Studi di GenovaGenoaItaly
  2. 2.Dipartimento di Fisica – DIFIUniversità degli Studi di GenovaGenoaItaly

Personalised recommendations