Advertisement

JOM

, Volume 70, Issue 11, pp 2619–2625 | Cite as

The Anticorrosive and Antifouling Properties of Ni-W-P-nSiO2 Composite Coating in A Simulated Oilfield Environment

  • Jing Hu
  • Bin Wang
  • Yingchao Xu
  • Luo Zhou
Surface Engineering for Improved Corrosion or Wear Resistance
  • 43 Downloads

Abstract

Aiming at the problem of tubing corrosion and scaling in the oilfield environment, the corrosion and scaling behaviour of nickel-tungsten-phosphorus-silica (Ni-W-P-nSiO2) composite coatings prepared on L245 is investigated by immersion test, electrochemical measurement and static scaling test. The results indicated that the corrosion rate of Ni-W-P coating (0.1075 mm a−1) was higher than that of Ni-W-P-nSiO2 coating (0.0552 mm a−1), consistent with the results of corrosion current density (icorr). It was also found that the compact corrosion product film that forms on the Ni-W-P-nSiO2 coating consists of Ni3S2 and FeO. The average scaling rate and calcium loss rate value of the Ni-W-P-nSiO2 coating (2.43 × 10−6  g cm−2 h−1, 0.0344−2 cm−2) were both lower than those of the Ni-W-P coating (1.53 × 10−5 g cm−2 h−1, 0.0542 cm−2), which indicates that SiO2 nanoparticle co-deposition in Ni-W-P coating with the contact angle of 93.71° can improve its antifouling property.

Notes

Funding

Funding was provided by National Natural Science Foundation of China (No. 51602269) and scientific research starting project of SWPU (No. 2015QHZ019).

References

  1. 1.
    X. Jiang, S. Nešić, B. Kinsella, B. Brown, and D. Young, Corrosion 69, 15 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Wang, C. Chen, R. Li, W. Jiang, X. Yu, ISOPE, vol. 54 (2015).Google Scholar
  3. 3.
    K. Hari krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, Metal. Mater. Trans. A 37, 1917 (2006).CrossRefGoogle Scholar
  4. 4.
    C.A. Loto, Silicon 8, 1 (2016).Google Scholar
  5. 5.
    S. Ranganatha, T.V. Venkatesha, and K. Vathsala, Appl. Surf. Sci. 256, 7377 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Karthikeyan and L. Vijayaraghavan, IJMMM 4, 106 (2016).CrossRefGoogle Scholar
  7. 7.
    X.H. Zhao, Y. Han, Z.Q. Bai, and B. Wei, Electrochim. Acta 56, 7725 (2011).CrossRefGoogle Scholar
  8. 8.
    M. Islam, M.R. Azhar, Y. Khalid, R. Khan, and H.S. Abdo, J. Mater. Eng. Perform. 24, 1 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Jin and L. Hua, Mater. Sci. Technol. 23, 387 (2007).Google Scholar
  10. 10.
    X. Zhan, P. Zhang, P.M. Voyles, L. Xinyu, R. Akolka, and E. Frank, Acta Mater. 122, 400 (2017).CrossRefGoogle Scholar
  11. 11.
    C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, and L. Liu, Electrochim. Acta 56, 6380 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Roy and P. Sahoo, J. Coat. 2013, 1 (2013).Google Scholar
  13. 13.
    J. Seo and A. Mani, Phys. Fluids 28, 89 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Sadeghzadeh-Attar, G. Ayubikia, and M. Ehteshamzadeh, Surf. Coat. Technol. 307, 837 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Cheng, C. Shuai, Q. Hou, D. Han, and Z. Han, Rare Met. Mater. Eng. 45, 1931 (2016).CrossRefGoogle Scholar
  16. 16.
    D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, and P.Y. Zhang, Appl. Surf. Sci. 255, 7051 (2009).CrossRefGoogle Scholar
  17. 17.
    X. Li, C. Zhi, Z. Zhang, and H. Dang, Appl. Surf. Sci. 252, 7856 (2006).CrossRefGoogle Scholar
  18. 18.
    J.L. Wang, Y.Z. Zhang, and R.D. Xu, Chin. Trans. Nonferrous Met. Soc. China 20, 839 (2010).CrossRefGoogle Scholar
  19. 19.
    J. Wang and R. Xu, Rare Met. Mater. Eng. 38, 567 (2009).Google Scholar
  20. 20.
    ASTM Standard G31, ASTM int. PA (2004).Google Scholar
  21. 21.
    G. Lu and G. Zangari, Electrochim. Acta 47, 2969 (2002).CrossRefGoogle Scholar
  22. 22.
    A. Alzahrani, Y. Alhamed, L. Petrov, S. Armyanov, E. Valova, J. Georgieva, and J. Dille, J. Solid State Electron. 18, 1951 (2014).CrossRefGoogle Scholar
  23. 23.
    J.N. Balaraju, T.S.N.S. Narayanan, and S.K. Seshadri, Mater. Res. Bull. 41, 847 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Ranganatha and T.V. Venkatesha, Phys. Scr. 85, 1 (2012).CrossRefGoogle Scholar
  25. 25.
    E. Valova, I. Georgiev, S. Armyanov, J.L. Delplancke, D. Tachev, T. Tsacheva, and J. Dille, J. Electrochem. Soc. 148, C266 (2001).CrossRefGoogle Scholar
  26. 26.
    X.Q. Xu, J. Miao, Z.Q. Bai, Y.R. Feng, Q.R. Ma, and W.Z. Zhao, Appl. Surf. Sci. 258, 8802 (2012).CrossRefGoogle Scholar
  27. 27.
    Y.R. Zhou, Z.J. Zhu, L.L. Nie, J.Q. Zhang, and F.H. Cao, Surf. Tech 45, 8 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Sichuan Provincial Research Center of Welding Engineering TechnologyChengduChina
  2. 2.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations