Advertisement

JOM

, Volume 71, Issue 1, pp 96–102 | Cite as

Measurement of Bulk Oxygen Diffusivity in (La0.8Sr0.2)0.95MnOδ

  • Jacob Davis
  • Uday Pal
  • Srikanth Gopalan
  • Karl Ludwig
  • Soumendra BasuEmail author
Advancement in Solid Oxide Fuel Cell Research
  • 57 Downloads

Abstract

Strontium-doped lanthanum manganite is widely used as a cathode material for solid oxide fuel cells (SOFCs). In this study, the oxygen diffusivity in A-site-deficient (La0.8Sr0.2)0.95MnOδ (LSM-20) was measured as a function of temperature (600°C, 700°C, and 800°C) and oxygen partial pressure (0.03 atm, 0.16 atm, and 0.30 atm). Tracer (O-18) concentration profiles were measured in single-crystal epitaxial thin films of LSM-20 by time-of-flight secondary-ion mass spectroscopy (TOF-SIMS). The profile was fit to a diffusion equation to obtain the diffusivity of oxygen in bulk LSM-20 as a function of temperature and oxygen partial pressure. A defect model was used in conjunction with the experimental data to calculate the activation energies of oxygen migration, Schottky reaction, redox reaction, and charge disproportionation reaction in LSM-20. These calculated data were then used to calculate the Brouwer diagram of (La0.8Sr0.2)0.95MnOδ at 800°C, a typical operating temperature of SOFCs.

Notes

Acknowledgements

This work has been supported in part through the DOE SECA program under Contract No. DE-NT0004104. A portion of the research was performed at EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory under Proposal 46707. The authors acknowledge the contributions of Dr. Tiffany Casper, Dr. Zihua Zhu, and Dr. Laxmikant Saraf at PNNL.

References

  1. 1.
    S.M. Haile, Acta Mater. 51, 5981 (2003).CrossRefGoogle Scholar
  2. 2.
    S.B. Adler, Chem. Rev. 104, 4791 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Darvish, H. Sabarou, S.K. Saxena, and Y. Zhong, J. Electrochem. Soc. 162, E134 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Nowatny and M. Rekas, J. Am. Ceram. Soc. 81, 67 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Juhl, S. Primdahl, C. Manon, and M. Mogensen, J. Power Sources 61, 173 (1996).CrossRefGoogle Scholar
  6. 6.
    J. Fleig, Annu. Rev. Mater. Res. 33, 361 (2003).CrossRefGoogle Scholar
  7. 7.
    R.A. De Souza and J.A. Kilner, Mater. Lett. 43, 43 (2000).CrossRefGoogle Scholar
  8. 8.
    Y. Ji, J.A. Kilner, and M.F. Carolan, Solid State Ionics 176, 937 (2005).CrossRefGoogle Scholar
  9. 9.
    E. Navickas, T.M. Huber, Y. Chen, W. Hetaba, G. Holzlechner, G. Rupp, M. Stoger-Pollach, G. Friedbacher, H. Hutter, B. Yildiz, and J. Fleig, Phys. Chem. Chem. Phys. 17, 7659 (2015).CrossRefGoogle Scholar
  10. 10.
    F. Zheng and L.R. Pederson, J. Electrochem. Soc. 146, 2810 (1999).CrossRefGoogle Scholar
  11. 11.
    S.P. Jiang, J.P. Zhang, Y. Ramprakash, D. Molosevic, and K.J. Wilshier, J. Mater. Sci. 35, 2735 (2000).CrossRefGoogle Scholar
  12. 12.
    F.W. Poulsen, Solid State Ionics 129, 145 (2000).CrossRefGoogle Scholar
  13. 13.
    C.J. Howard, B.J. Kennedy, and B.C. Chakoumakos, J. Phys. Condens. Matter 12, 349 (2000).CrossRefGoogle Scholar
  14. 14.
    J.N. Davis, K.F. Ludwig, K.E. Smith, J.C. Woicik, S. Gopalan, U.B. Pal, and S.N. Basu, J. Electrochem. Soc. 164, F3091 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Crank, The Mathematics of Diffusion, 2nd ed. (New York: Oxford University Press, 1975), p. 30.Google Scholar
  16. 16.
    M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, J. Appl. Phys. 68, 1272 (1990).CrossRefGoogle Scholar
  17. 17.
    I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, and M. Dokiya, Solid State Ionics 86, 1197 (1996).CrossRefGoogle Scholar
  18. 18.
    F.A. Kroger and H.J. Vink, Solid State Physics 3, 307 (1956).CrossRefGoogle Scholar
  19. 19.
    P.G. Shewmon, Diffusion in Solids, 1st ed. (New York: McGraw-Hill, 1963), p. 61.Google Scholar
  20. 20.
    J.M. Polfus, B. Yildiz, and H. Tuller, Phys. Chem. Chem. Phys. 10, 10 (2018).  https://doi.org/10.1039/c8cp02443j.CrossRefGoogle Scholar
  21. 21.
    M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikovac, and J. Maier, Phys. Chem. Chem. Phys. 15, 5443 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringBoston UniversityBrooklineUSA
  2. 2.Structural Health Systems, Inc.CambridgeUSA
  3. 3.Department of Mechanical EngineeringBoston UniversityBostonUSA
  4. 4.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations