Advertisement

JOM

, Volume 71, Issue 1, pp 264–271 | Cite as

Contributions to Mechanical Characteristics Improvement of Some Biomedical TNTZ Alloys by Adding Fe, Si, and O: A Comparative Study

  • Doina Raducanu
  • Vasile Danut Cojocaru
  • Anna NocivinEmail author
  • Ion Cinca
  • Nicolae Serban
  • Elisabeta Mirela Cojocaru
Materials in Nanomedicine and Bioengineering
  • 67 Downloads

Abstract

The effects of Fe, Si, and O additions on the mechanical properties of some biomedical TNTZ β-Ti alloys were analyzed to reveal the dissimilarities arising between TNTZ alloys variants as benchmark alloys, and the same alloys with additions of Fe, Si, and/or O; because the Ti-6Al-4V alloy is still widely used in medical applications, data for this alloy are also reported. The mechanical properties of the analyzed alloys correspond to the post-solution-treated condition. Considering the biomedical use of these alloys for low-cost, load-bearing bone implants, the additions of Fe, Si, and O showed a generally beneficial effect on the modulus of elasticity (maintained at approximately 75 GPa), strength (values of yield stress at approximately 1000 MPa), and ductility; the main practical result is that all the analyzed alloys showed an elastic modulus lower than that of the Ti-6Al-4V alloy. The addition of O and the co-addition of Fe-O in TNTZ β-Ti alloys seems to produce the best combination of bio-mechanical characteristics.

Notes

Acknowledgement

The authors acknowledge financial support for this research by the Romanian National Authority for Scientific Research CCCDI–UEFISCDI, Project PN-III-P2-2.1-PED-2016-1352, No. 112 PED/2017.

References

  1. 1.
    M. Niinomi, J. Mech. Behav. Biomed. Mater. 1, 30 (2008).CrossRefGoogle Scholar
  2. 2.
    R. Yang, Y. Hao, and S. Li, Biomedical Engineering, Trends in Materials Science, ed. A. Laskovski (Croatia: InTech, 2011), pp. 225–248. https://doi.org/10.5772/13269.CrossRefGoogle Scholar
  3. 3.
    M. Niinomi, M. Nakai, M. Hendrickson, P. Nandwana, T. Alam, D. Choudhuri, and R. Banerjee, Scr. Mater. 123, 144 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Zhao, T. Ebel, M. Yan, and M. Qian, JOM 67, 2236 (2015). https://doi.org/10.1007/s11837-015-1590-6.CrossRefGoogle Scholar
  5. 5.
    M.A.-H. Gepreel, Mater. Today: Proceed. 2, S979 (2015). https://doi.org/10.1016/j.matpr.2015.07.445.CrossRefGoogle Scholar
  6. 6.
    S. Ozan, J. Lin, Y. Li, and C. Wen, J. Mech. Behav. Biomed. Mater. 75, 119 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Xu, Y. Xiao, D. Yi, H. Liu, L. Wu, and J. Wen, Trans. Nonferrous Met. Soc. China 25, 2556 (2015).CrossRefGoogle Scholar
  8. 8.
    I. Kopova, J. Strasky, P. Harcuba, M. Landa, M. Janecek, and L. Bacakova, Mater. Sci. Eng., C 60, 230 (2016). https://doi.org/10.1016/j.msec.2015.11.043.CrossRefGoogle Scholar
  9. 9.
    M. Niinomi and M. Nakai, Int. J. Biomater. ID 836587, 10 (2011).  https://doi.org/10.1155/2011/836587.
  10. 10.
    M. Niinomi, M. Nakai, and J. Hieda, Acta Biomater. 8, 3888 (2012).CrossRefGoogle Scholar
  11. 11.
    K.Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E.J. Lavernia, R.Z. Valiev, B. Sarrafpour, H. Zoellner, and S.P. Ringer, Mater. Sci. Eng., C 33, 3530 (2013).CrossRefGoogle Scholar
  12. 12.
    M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Int. Sch. Sci. Res. Innov. 8, 822 (2014).Google Scholar
  13. 13.
    M.A.-H. Gepreel and M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013).CrossRefGoogle Scholar
  14. 14.
    Z. Lin, L. Wang, X. Xue, W. Lua, J. Qin, and D. Zhang, Mater. Sci. Eng., C 33, 4551 (2013).CrossRefGoogle Scholar
  15. 15.
    D. Kent, G. Wang, and M. Dargusch, J. Mech. Behav. Biomed. Mater. 28, 15 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Lutjering and J.C. Williams, Titanium, 2nd ed. (New York: Springer, 2007), p. 442.Google Scholar
  17. 17.
    M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Structure and properties of Ti and Ti alloys. Titanium and Titanium Alloys, ed. C. Leyens and M. Peters (Hoboken: Wiley-VCH, 2003)Google Scholar
  18. 18.
    Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, and D. Banerjee, Scr. Mater. 116, 49 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, Materials 7, 1709 (2014).CrossRefGoogle Scholar
  20. 20.
    N. Nagasako, R. Asahi, D. Isheim, D.N. Seidman, S. Kuramoto, and T. Furuta, Acta Mater. 105, 347 (2016).CrossRefGoogle Scholar
  21. 21.
    L.S. Wei, H.Y. Kim, and S. Miyazaki, Acta Mater. 100, 313 (2015).CrossRefGoogle Scholar
  22. 22.
    F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, Materials 7, 542 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Mater. Trans. 50, 2716 (2009).CrossRefGoogle Scholar
  24. 24.
    A. Biesiekierski, J. Lin, Y. Li, D. Ping, Y. Yamabe-Mitarai, and C. Wen, Acta Biomater. 32, 336 (2016).CrossRefGoogle Scholar
  25. 25.
    M.F. Ijaz, S. Dubinskiy, Y. Zhukova, A. Korobkova, Y. Pustov, V. Brailovski, and S. Prokoshkin, JOM 69, 1334 (2017).CrossRefGoogle Scholar
  26. 26.
    H.A. Ngwa, A. Kanthasamy, V. Anantharam, C. Song, T. Witte, R.S. Houk, and A.G. Kanthasamy, Toxicol. Appl. Pharmacol. 240, 273 (2009).CrossRefGoogle Scholar
  27. 27.
    T.A.G. Donato, L.H. de Almeida, R.A. Nogueira, T.C. Niemeyer, C.R. Grandini, R. Caram, S.G. Schneider, and A.R. Santos Jr. Mater. Sci. Eng. C 29, 1365 (2009).CrossRefGoogle Scholar
  28. 28.
    S.C. Bondy, Neurotoxicology 31, 575 (2010).CrossRefGoogle Scholar
  29. 29.
    M.J. Donachie Jr. Titanium—A Technical Guide, 2nd ed. (Materials Park: ASM International, 2000).Google Scholar
  30. 30.
    N. Clément, A. Lenain, and P.J. Jacques, JOM 59 (1), 50 (2007).CrossRefGoogle Scholar
  31. 31.
    M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, and K. Kubo, Titanium’92 Science and Technology, ed. F.H. Froes and I.L. Caplan (Warrendale, PA: TMS, 1993), p. 217.Google Scholar
  32. 32.
    M. Abdel-Hady, K. Hinoshita, and M. Morinaga, Scr. Mater. 55, 477 (2006).CrossRefGoogle Scholar
  33. 33.
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Int. J. Min. Metal. Mater. 24, 909 (2017). https://doi.org/10.1007/s12613-017-1477-3.CrossRefGoogle Scholar
  34. 34.
    A.H. Hussein, M.A.-H. Gepreel, M.K. Gouda, A.M. Hefnawy, and S.H. Kandil, Mater. Sci. Eng., C 61, 574 (2016).CrossRefGoogle Scholar
  35. 35.
    H.C. Hsu, S.K. Hsu, S.C. Wu, C.J. Lee, and W.F. Ho, Mater. Charact. 61, 851 (2010).CrossRefGoogle Scholar
  36. 36.
    J. Strasky, P. Harcuba, K. Vaclavova, K. Horvath, M. Landa, O. Srba, and M. Janecek, J. Mech. Behav. Biomed. Mater. 71, 329 (2017). https://doi.org/10.1016/j.jmbbm.2017.03.026.CrossRefGoogle Scholar
  37. 37.
    D.C. Zhang, Y.F. Mao, Y.L. Li, J.J. Li, M. Yuan, and J.G. Lin, Mater. Sci. Eng., A 559, 706 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).CrossRefGoogle Scholar
  39. 39.
    D. Raducanu, V.D. Cojocaru, A. Nocivin, D.M. Gordin, and I. Cinca, Mater. Sci. Eng., A 689, 25 (2017).CrossRefGoogle Scholar
  40. 40.
    I. Cinca, A. Nocivin, D. Raducanu, T. Gloriant, D.M. Gordin, I. Dan, A. Caprarescu, and V. D. Cojocaru, Kovove Mater. 53, 17 (2015).Google Scholar
  41. 41.
    M.J. Xiao, Y.X. Tian, G.W. Mao, S.J. Li, Y.L. Hao, and R. Yang, J. Mater. Sci. Tech. 27, 1099 (2011).CrossRefGoogle Scholar
  42. 42.
    R.J. Talling, R.J. Dashwood, M. Jackson, and D. Dye, Scr. Mater. 60, 1000 (2009).CrossRefGoogle Scholar
  43. 43.
    I. Cinca, D. Raducanu, A. Nocivin, D.M. Gordin, and V.D. Cojocaru, Kovove Mater. 51, 165 (2013).Google Scholar
  44. 44.
    D. Raducanu, C. Vasilescu, A. Nocivin, S.I. Drob, I. Cinca, D. Gordón, M. Marcu, and V.D. Cojocaru, Int. J. Electrochem. Sci. 10, 4346 (2015). http://www.electrochemsci.org/papers/vol10/100504346.pdf.
  45. 45.
    A. Nocivin, D. Raducanu, I. Cinca, C. Trisca-Rusu, M. Butu, I. Thibon, and V.D. Cojocaru, J. Mater. Eng. Perform. 24, 1587 (2015).CrossRefGoogle Scholar
  46. 46.
    A. Nocivin, V.D. Cojocaru, D. Raducanu, I. Cinca, M.L. Angelescu, I. Dan, N. Serban, and M. Cojocaru, J. Mater. Eng. Perform. 26, 4373 (2017). https://doi.org/10.1007/s11665-017-2863-8.CrossRefGoogle Scholar
  47. 47.
    D. Raducanu, E. Vasilescu, V.D. Cojocaru, I. Cinca, P. Drob, C. Vasilescu, and S.I. Drob, J. Mech. Behav. Biomed. Mater. 4, 1421 (2011).CrossRefGoogle Scholar
  48. 48.
    V.D. Cojocaru, D. Raducanu, and T. Gloriant, JOM 64, 572 (2012). https://doi.org/10.1007/s11837-012-0312-6.CrossRefGoogle Scholar
  49. 49.
    D. Kent, G. Wang, Z. Yu, X. Ma, and M. Dargusch, J. Mech. Behav. Biomed. Mater. 4, 405 (2011).CrossRefGoogle Scholar
  50. 50.
    J. Sun, Q. Yao, H. Xing, and W.Y. Guo, J. Phys.: Condens. Matter 19, 486215 (2007).Google Scholar
  51. 51.
    J. Matyka, F. Faudot, and J. Bigot, Scr. Metall. 13, 645 (1979).CrossRefGoogle Scholar
  52. 52.
    D. Kuroda, Y. Tanaka, H. Kawasaki, K. Asami, and T. Hanawa, Mater. Trans. 46, 3015 (2005).CrossRefGoogle Scholar
  53. 53.
    D. Kuroda, H. Kawasaki, A. Yamamoto, S. Hiromoto, and T. Hanawa, Mater. Sci. Eng., C 25, 312 (2005).CrossRefGoogle Scholar
  54. 54.
    P. Lima, M. Vaconcellos, R. Montenegro, M. Bahia, I. Antunes, and E. Costa, Hum. Exp. Toxicol. 30, 1435 (2011).CrossRefGoogle Scholar
  55. 55.
    S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, and S.R. Seagle, Metall. Trans. A 18, 2015 (1987).CrossRefGoogle Scholar
  56. 56.
    K. Chaudhuri and J.H. Perepezko, Metall. Mater. Trans. A 25, 1109 (1994).CrossRefGoogle Scholar
  57. 57.
    H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Int. J. Mineral. Metal. Mater. 19, 1128 (2012). https://doi.org/10.1007/s12613-012-0681-4.CrossRefGoogle Scholar
  58. 58.
    J.I. Kim, H.Y. Kim, H. Hosoda, and S. Miyazaki, Mater. Trans. 46, 852 (2005).CrossRefGoogle Scholar
  59. 59.
    R. Boyer, G. Welsch, and E.W. Collings, Materials Properties, Handbook: Titanium Alloys (Materials Park: ASM International, 1994), p. 516.Google Scholar
  60. 60.
    R.P. Kolli, W.J. Joost, and S. Ankem, JOM 67, 1273 (2015). https://doi.org/10.1007/s11837-015-1411-y.CrossRefGoogle Scholar
  61. 61.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science 300, 464 (2003).CrossRefGoogle Scholar
  62. 62.
    J.M. Chaves, O. Florêncio, P.S. Silva, P.W.B. Marques, and S.G. Schneider, J. Alloy. Compd. 616, 420 (2014).CrossRefGoogle Scholar
  63. 63.
    H. Lu, C.X. Li, F.X. Yin, Q.F. Fang, and O. Umezawa, Mater. Sci. Eng., A 541, 28 (2012).CrossRefGoogle Scholar
  64. 64.
    F. Yin, S. Iwasaki, D. Ping, and K. Nagai, Adv. Mater. 18, 1541 (2006).CrossRefGoogle Scholar
  65. 65.
    J.L. Snoek, Letter to the editor. Physica 6, 591 (1939).CrossRefGoogle Scholar
  66. 66.
    I. Svedung and N.-G. Vannerberg, Corr. Sci. 14, 391 (1974).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringPolitehnica University of BucharestBucharestRomania
  2. 2.Faculty of Mechanical, Industrial and Maritime EngineeringOvidius University of ConstantaConstantaRomania

Personalised recommendations