pp 1–8 | Cite as

Density Reduction of Mo-Si-B Alloys by Vanadium Alloying

  • Julia Becker
  • Ulf Betke
  • Michael Hoffmeister
  • Manja Krüger
Recent Advances in Design and Development of Refractory Metals and Alloys


Potential Mo-V-Si-B materials with ~ 17% reduced density compared with the reference alloy Mo-9Si-8B have been developed. V was found to be soluble in all three phases within the Moss-Mo3Si-Mo5SiB2 triangle. Due to a high phase fraction of Moss phase and its homogeneous distribution, reasonable fracture toughness of 13.3 MPa√m is achieved. On the other hand, the creep resistance was reduced by V alloying, while the normalized creep strength of the novel alloy shows good potential as a lightweight version of this class of material for use in structural applications.



Financial support in the framework of the DFG Graduate School 1554 “Micro macro interactions of structured media and particle systems” is greatly acknowledged. We thank F. Gang (KIT) for the consolidation by the FAST method, Dr. E. Wessel (FZ Jülich) for SEM analyses of alloy Mo-40V-9Si-8B, and V. Bolbut (OVGU) for assistance with the creep tests.


  1. 1.
    J.H. Perepezko, Science 326, 1068 (2009).CrossRefGoogle Scholar
  2. 2.
    A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 55, 961 (2007).CrossRefGoogle Scholar
  3. 3.
    K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada, Intermetallics 11, 787 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Cheng, S. Yi, and J.S. Park, Intermetallics 23, 12 (2012).CrossRefGoogle Scholar
  5. 5.
    F. Gang, A. Kauffmann, and M. Heilmaier, Metall. Mater. Trans. A 49, 763 (2018).CrossRefGoogle Scholar
  6. 6.
    A.A.A. Pinto da Silva, N. Chaia, F. Ferreira, G. Carvalho Coelho, J.M. Fiorani, N. David, M. Vilasi, and C.A. Nunes, Calphad 59, 199 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Krüger, Scr. Mater. 121, 75 (2016).CrossRefGoogle Scholar
  8. 8.
    D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H. Christ, B. Gorr, and S. Burk, JOM 61(7), 61 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Jéhanno, M. Heilmaier, and H. Kestler, Intermetallics 12, 1005 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Sakidja, J. Myers, S. Kim, and J.H. Perepezko, Int. J. Refract. Met. Hard Mater. 18, 193 (2001).CrossRefGoogle Scholar
  12. 12.
    N. Takata, N. Sekido, M. Takeyama, J.H. Perepezko, M. Follett-Figueroa, and C. Zhang, Intermetallics 72, 1 (2016).CrossRefGoogle Scholar
  13. 13.
    M.A. Azim, D. Schliephake, C. Hochmuth, B. Gorr, H.J. Christ, U. Glatzel, and M. Heilmaier, JOM 67, 2621 (2015).CrossRefGoogle Scholar
  14. 14.
    T. Moriyama, K. Yoshimi, M. Zhao, T. Masnou, T. Yokoyama, J. Nakamura, H. Katsui, and T. Goto, Intermetallics 84, 92 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Nakayama, N. Sekido, S. Uemura, S. Tsurekawa, and K. Yoshimi, Mater. Trans. 59, 518 (2018).CrossRefGoogle Scholar
  16. 16.
    J. Becker, U. Betke, E. Wessel, and M. Krüger, Mater. Today Commun. 15, 314 (2018).CrossRefGoogle Scholar
  17. 17.
    R. Sakidja, J.H. Perepezko, S. Kim, and N. Sekido, Acta Mater. 56, 5223 (2008).CrossRefGoogle Scholar
  18. 18.
    R.W. Cheary, A.A. Coelho, and J.P. Cline, J. Res. Natl. Inst. Stand. Technol. 109, 1 (2004).CrossRefGoogle Scholar
  19. 19.
    J. Becker and M. Krüger, Pract. Metallogr. 52, 295 (2015).CrossRefGoogle Scholar
  20. 20.
    V. Bolbut, I. Bogomol, C. Bauer, and M. Krüger, Materwiss. Werksttech. 48, 1113 (2017).CrossRefGoogle Scholar
  21. 21.
    R. Mitra, A.K. Srivastava, N.E. Prasad, and S. Kumari, Intermetallics 14, 1461 (2006).CrossRefGoogle Scholar
  22. 22.
    J.H. Schneibel, M.J. Kramer, and D.S. Easton, Scr. Mater. 46, 217 (2002).CrossRefGoogle Scholar
  23. 23.
    Deutsches Institut für Normung E.V., DIN EN ISO 23146, Beuth Verlag GmbH, 4 (2015).Google Scholar
  24. 24.
    M. Krüger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler, Intermetallics 16, 933 (2008).CrossRefGoogle Scholar
  25. 25.
    G. Bauer, V. Günther, H. Hess, A. Otte, O. Roidl, H. Roller, and S. Sattelberger, Ullmann’s Encycl. Ind. Chem. 38, 49 (2012).Google Scholar
  26. 26.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Intermetallics 9, 591 (2001).CrossRefGoogle Scholar
  27. 27.
    C. Colinet and J.-C. Tedenac, Intermetallics 50, 108 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier, Intermetallics 48, 10 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Hochmuth, D. Schliephake, R. Völkl, M. Heilmaier, and U. Glatzel, Intermetallics 48, 3 (2014).CrossRefGoogle Scholar
  30. 30.
    M. Krüger, D. Schliephake, P. Jain, and K.S. Kumar, JOM 65, 301 (2013).CrossRefGoogle Scholar
  31. 31.
    R. Li, B. Li, T. Wang, S. Ren, X. Chen, J. Wang, and G. Zhang, J. Alloys Compd. 743, 716 (2018).CrossRefGoogle Scholar
  32. 32.
    H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie, Intermetallics 9, 319 (2001).CrossRefGoogle Scholar
  33. 33.
    K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguchi, Scr. Mater. 49, 285 (2003).CrossRefGoogle Scholar
  34. 34.
    P. Jain and K.S. Kumar, Acta Mater. 58, 2124 (2010).CrossRefGoogle Scholar
  35. 35.
    M.K. Meyer, M.J. Kramer, and M. Akinca, Intermetallics 4, 273 (1996).CrossRefGoogle Scholar
  36. 36.
    M. Heilmaier, M. Krüger, and H. Saage, Mater. Sci. Forum 549, 633 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Julia Becker
    • 1
  • Ulf Betke
    • 1
  • Michael Hoffmeister
    • 1
  • Manja Krüger
    • 2
    • 3
  1. 1.Institut für Werkstoff- und Fügetechnik, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Forschungszentrum Jülich, IEK-2JülichGermany
  3. 3.Jülich Aachen Research Alliance – JARA EnergyJülichGermany

Personalised recommendations