Advertisement

JOM

, Volume 70, Issue 10, pp 1924–1928 | Cite as

Nano-ilmenite with Dual Functions of Photocatalysis and Adsorption

  • Yen-Hua Chen
  • Fu-An Li
Characterization of Green Materials
  • 71 Downloads

Abstract

Water pollution, including the generation of wastewater, is becoming an increasingly serious global issue. In this study, ilmenite (FeTiO3) nano-photocatalysts were synthesized via a simple sol-gel method to determine their applicability to wastewater remediation. Methylene blue was photocatalytically decomposed by visible light in the presence of nano-ilmenite, and batch experiments were performed to study the adsorption characteristic. The results reveal that nano-ilmenite exhibits good photocatalytic activity under visible-light illumination (rate constant, 0.029 min−1) and possesses a high adsorption capacity (22.2 mg/g) for copper ions. These results indicate that nano-ilmenite is a good photocatalyst. The photocatalytic activity combined with its high copper ion adsorption activity renders it a suitable material for wastewater treatment.

Notes

Acknowledgements

We thank the National Science Council for financial support [Grant: NSC 99-2116-M-006-007]. Prof. W.T. Jiang of the Department of Earth Sciences, National Cheng Kung University, is thanked for helping with XRD and TEM measurements. We are grateful to W.T. Kuo in our laboratory for help with some calculations.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C.E. Cerniglia, Biodegrad. 3, 351 (1992).CrossRefGoogle Scholar
  2. 2.
    D.M. Dong, Y.M. Nelson, L.W. Lion, M.L. Shuler, and W.C. Ghiorse, Water Res. 34, 427 (2000).CrossRefGoogle Scholar
  3. 3.
    L. Hinda, P. Eric, H. Ammar, K. Mohamed, E. Elimame, G. Cantal, and H. Jean-Marie, Appl. Catal. B Environ. 39, 75 (2002).CrossRefGoogle Scholar
  4. 4.
    Y.H. Chen and C.C. Lin, Phys. Chem. Miner. 41, 727 (2014).CrossRefGoogle Scholar
  5. 5.
    S. Ahuja and T.R.N. Kutty, J. Photochem. Photobiol. A Chem. 97, 99 (1996).CrossRefGoogle Scholar
  6. 6.
    S. Vaidyanathan, K.R. Ryan, and E.W. Eduardo, Ind. Eng. Chem. Res. 45, 2187 (2006).CrossRefGoogle Scholar
  7. 7.
    H.S. Hafez, Mater. Lett. 63, 1471 (2009).CrossRefGoogle Scholar
  8. 8.
    C.T. Hsieh, W.S. Fan, W.Y. Chen, and J.Y. Lin, Sep. Purif. Technol. 67, 312 (2009).CrossRefGoogle Scholar
  9. 9.
    M.H. Khedr, K.S. Abdel-Halim, and N.K. Soliman, Mater. Lett. 63, 598 (2009).CrossRefGoogle Scholar
  10. 10.
    J.M. Gu, S.H. Li, E.B. Wang, Q.Y. Li, G.Y. Sun, R.I. Xu, and H. Zhang, J. Solid State Chem. 182, 1265 (2009).CrossRefGoogle Scholar
  11. 11.
    C.F. Chang, C.Y. Chang, W. Höll, M. Ulmer, Y.H. Chen, and H.J. Gro, Water Res. 38, 2559 (2004).CrossRefGoogle Scholar
  12. 12.
    C.C. Wu, Y.C. Wang, T.F. Lin, H.L. Tsao, P.C. Chen, and J. Chin, Inst. Environ. Eng. 15, 255 (2005).Google Scholar
  13. 13.
    C. Namasivayam and K. Prathap, J. Environ. Eng. Manng. 16, 267 (2006).Google Scholar
  14. 14.
    K. Gupta, K. Biswas, and U.C. Ghosh, Eng. Chem. Res. 47, 9903 (2008).CrossRefGoogle Scholar
  15. 15.
    N.C. Wilson, J. Muscat, D. Mkhonto, P.E. Ngoepe, and N.M. Harrison, Phys. Rev. B 71, 75202 (2005).CrossRefGoogle Scholar
  16. 16.
    J.J. Ru, Y.X. Huan, C.Y. Xu, J. Li, Y. Li, D. Wang, K. Gong, R. Wang, and Z.R. Zhou, Ceram. Int. 40, 6799 (2014).CrossRefGoogle Scholar
  17. 17.
    F. Zhou, S. Kotru, and R.K. Pandey, Mater. Lett. 57, 2104 (2003).CrossRefGoogle Scholar
  18. 18.
    T. Fujii, M. Kayano, Y. Takada, M. Nakanishi, and J. Takada, Solid State Ion. 172, 289 (2004).CrossRefGoogle Scholar
  19. 19.
    T. Fujii, M. Kayano, Y. Takada, M. Nakanishi, and J. Takada, J. Magn. Magn. 272, 2010 (2004).CrossRefGoogle Scholar
  20. 20.
    G. Zhang and O. Ostrovski, Int. J. Miner. Process. 64, 201 (2002).CrossRefGoogle Scholar
  21. 21.
    Y. Takada, M. Nakanishi, and T. Fujii, Appl. Phys. Lett. 92, 252102 (2008).CrossRefGoogle Scholar
  22. 22.
    Y.K. Sharma, M. Kharkwal, S. Uma, and R. Nagarajan, Polyhedron 28, 579 (2009).CrossRefGoogle Scholar
  23. 23.
    X. Tang and K. Hu, J. Mater. Sci. 41, 8025 (2006).CrossRefGoogle Scholar
  24. 24.
    Y.J. Kim, B. Gao, S.Y. Han, M.H. Jung, A.K. Chakraborty, T.Y. Ko, C.M. Lee, and W.I. Lee, J. Phys. Chem. C 113, 19179 (2009).CrossRefGoogle Scholar
  25. 25.
    M. Ma, D.H. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen, Chem. Eur. J. 12, 5075 (2006).CrossRefGoogle Scholar
  26. 26.
    C. Li and B. Liang, J. Alloys Compd. 459, 354 (2008).CrossRefGoogle Scholar
  27. 27.
    E. Thimsen, S. Biswas, C.S. Lo, and P. Biswas, J. Phys. Chem. C 113, 2014 (2009).CrossRefGoogle Scholar
  28. 28.
    A.T. Raghavender, N.H. Hong, K.J. Lee, M.H. Jung, Z. Skokoc, M. Vasilevskiy, M.F. Cerqueira, and A.P. Samantilleke, J. Magn. Magn. Mater. 331, 129 (2013).CrossRefGoogle Scholar
  29. 29.
    D.G. Gu, Y.Y. Qin, Y.G. Wen, L. Qin, and H.J. Seo, J. Twn Ins. Chem. Eng. 78, 431 (2017).CrossRefGoogle Scholar
  30. 30.
    Y. Yang, Q. Wu, Y. Guo, C. Hu, and E. Wang, J. Mol. Catal. 225, 203 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Priya and G. Madras, J. Photochem. Photobiol. A 179, 256 (2006).CrossRefGoogle Scholar
  32. 32.
    S.J. Allen, G. Mckay, J.F. Porter, and J. Colloid, Interface Sci. 280, 322 (2004).CrossRefGoogle Scholar
  33. 33.
    J.S. Miller, J.C. Calabrese, H. Rommelmann, H.R. Chittipeddi, J.H. Zhang, W.M. Reiff, and A.J. Epstein, J. Am. Chem. Soc. 109, 769 (1987).CrossRefGoogle Scholar
  34. 34.
    D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar
  35. 35.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solid B 15, 627 (1966).CrossRefGoogle Scholar
  36. 36.
    C.L. Peacock and D.M. Sherman, Geochim. Cosmochim. Acta 68, 2623 (2003).CrossRefGoogle Scholar
  37. 37.
    S. Lagergren and K. Sven, Vetenskapsakad. Handl. 24, 1 (1898).Google Scholar
  38. 38.
    Y.S. Ho and G. McKay, Sep. Purif. Methods 29, 189 (2000).CrossRefGoogle Scholar
  39. 39.
    Y.S. Ho and G. McKay, Proc. Biochem. 34, 451 (1999).CrossRefGoogle Scholar
  40. 40.
    D. Mohan, K.P. Singh, and V.K. Singh, Ind. Eng. Chem. Res. 44, 1027 (2005).CrossRefGoogle Scholar
  41. 41.
    M. Sljivic, I. Smiciklas, S. Pejanovic, and I. Plecas, Appl. Clay Sci. 43, 33 (2009).CrossRefGoogle Scholar
  42. 42.
    W.H. Zou, R.P. Han, Z.H. Chen, J.H. Zhang, and J. Shi, Colloids Surf. A: Physicochem. Eng. Aspects 279, 238 (2006).CrossRefGoogle Scholar
  43. 43.
    W. Li, S.H. Zhang, W. Jiang, and X.Q. Shan, Chemosphere 63, 1235 (2006).CrossRefGoogle Scholar
  44. 44.
    M. Takafuji, S. Ide, H. Ihara, and Z. Xu, Chem. Mater. 16, 1977 (2004).CrossRefGoogle Scholar
  45. 45.
    Y.C. Chang and D.H. Chen, J. Colloid Interface Sci. 283, 446 (2005).CrossRefGoogle Scholar
  46. 46.
    J.Y. Tseng, C.Y. Chang, Y.H. Chen, C.F. Chang, and P.C. Chiang, Colloids Surf. A: Physicochem. Eng. Aspects 295, 209 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations