, Volume 70, Issue 10, pp 2109–2118 | Cite as

Numerical Modeling of Liquid–Liquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles

  • Quynh N. Hoang
  • Marco A. Ramírez-Argáez
  • Alberto N. Conejo
  • Bart Blanpain
  • Abhishek DuttaEmail author
Multiphase Flows in Materials Processing


Ladle refining plays a key role in the steelmaking process. During the refining, a bubbly gas stream is used for mixing and to enhance the rate of removal of impurities from the molten steel. A numerical model has been developed to understand mass transfer and mixing behavior in a three-phase gas-stirred ladle. A two-resistance approach was used for the liquid–liquid mass transfer, while the mass transfer coefficient was determined using the Small Eddy theory. The model was validated with experimental data, obtained from a water–oil physical model simulating an industrial ladle with a scale factor of 1/17, valid for axisymmetric gas injection. Three variables were included to study the mass transfer behavior, namely gas flow rate, Q, oil (slag) thickness, h, and oil (slag) viscosity, \( \mu_{\text{o}} \). The gas flow rate ranged from 2.85 L/min to 8.56 L/min to meet industrial operating conditions. It was found that: (1) the volumetric mass transfer coefficient (ka) increases when the gas flow rate (Q) increases; and (2) increasing slag (oil) thickness has a positive influence on mass transfer as it considerably increases the interfacial area and promotes turbulence at the interface. At this range of gas flow rate, the effect of slag (oil) viscosity is limited. A general correlation was established: \( {\text{ka}} = 0.058Q^{0.459} h^{0.612} \). Mixing time was studied within the same flow rate range to observe its influence on the mass transfer. Mixing in the ladle is accomplished in a much shorter time than interphase mass transfer, specifically by two orders of magnitude, which indicates that mass transfer is the rate-limiting step.


  1. 1.
    S. Du, Improving Process Design in Steelmaking, Fundamentals of Metallurgy (Cambridge: Woodhead Publishing Limited, 2005), pp. 369–398.Google Scholar
  2. 2.
    A. Ghosh, Secondary Steel Making: Principles and Applications (Boca Raton: CRC Press LLC, 2001).Google Scholar
  3. 3.
    G.J.W. Kors and P.C. Glaws, Ladle Refining and Vacuum Degassing, the Making, Shaping and Treating of Steel (Pittsburgh: The AISE Steel Foundation, 1998), pp. 661–713.Google Scholar
  4. 4.
    S. Kim and R.J. Fruehan, Metall. Trans. B 18B, 381–390 (1987).CrossRefGoogle Scholar
  5. 5.
    K. Mori, Trans. ISIJ 28, 246–261 (1988).CrossRefGoogle Scholar
  6. 6.
    K. Ogawa and T. Onoue, ISIJ Int. 29, 148–153 (1989).CrossRefGoogle Scholar
  7. 7.
    M. Martín, M. Rendueles, and M. Díaz, Chem. Eng. Res. Des. 83, 1076–1084 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Dutta, R.P. Ekatpure, G.J. Heynderickx, A. de Broqueville, and G.B. Marin, Chem. Eng. Sci. 65, 1678–1693 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 35, 1–20 (1995).CrossRefGoogle Scholar
  10. 10.
    P.G. Jönsson and L.T.I. Jonsson, ISIJ Int. 41, 1289–1302 (2001).CrossRefGoogle Scholar
  11. 11.
    D. Mazumdar and J.W. Evans, ISIJ Int. 44, 447–461 (2004).CrossRefGoogle Scholar
  12. 12.
    G.A. Irons, A. Senguttuvan, and K. Krishnapisharody, ISIJ Int. 55, 1–6 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Zang, X. Zang, B. Xu, W. Cai, and F. Wang, Can. J. Chem. Eng. 93, 2307–2314 (2015).CrossRefGoogle Scholar
  14. 14.
    J.L. Xia, T. Ahokaien, and L. Holappa, Scand. J. Metall. 30, 69–76 (2001).CrossRefGoogle Scholar
  15. 15.
    J.L. Xia and T. Ahokaien, Metall. Mater. Trans. B 32, 733–741 (2001).CrossRefGoogle Scholar
  16. 16.
    H. Türkoğlu and B. Farouk, Metall. Trans. B 21, 771–781 (1990).CrossRefGoogle Scholar
  17. 17.
    W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 1251–1263 (2013).CrossRefGoogle Scholar
  18. 18.
    G. Venturini and M.B. Goldschmit, Metall. Mater. Trans. B 38, 461–475 (2007).CrossRefGoogle Scholar
  19. 19.
    M. Al-Harbi, H.V. Atkinson, and S. Gao, Proceedings of the XIth MCWASP (Opio, 2006).Google Scholar
  20. 20.
    B. Li, H. Yin, C.Q. Zhou, and F. Tsukihashi, ISIJ In. 48, 1704–1711 (2008).CrossRefGoogle Scholar
  21. 21.
    U. Singh, R. Anapagaddi, S. Mangal, K.A. Padmanabhan, and A.K. Singh, Metall. Mater. Trans. B 47B, 1804–1816 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Lin, H. Chen, and D. Xie, Asia-Pacific Energy Equipment Engineering Research Conference (2015), pp. 310–313.Google Scholar
  23. 23.
    K. Nakanishi, J. Szekely, and C.W. Chang, Ironmaking Steelmaking 2, 115–124 (1975).Google Scholar
  24. 24.
    S. Asai, T. Okamoto, J. He, and I. Muchi, Trans. ISIJ 23, 43–50 (1983).CrossRefGoogle Scholar
  25. 25.
    M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao, ISIJ Int. 35, 472–479 (1995).CrossRefGoogle Scholar
  26. 26.
    S.W.P. Cloeete, J.J. Eksten, and S.M. Bradshaw, Miner. Eng. 46–47, 16–24 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Ganguly and S. Chakraborty, Ironmaking Steelmaking 35, 524–530 (2008).CrossRefGoogle Scholar
  28. 28.
    W. Lao and M. Zhu, ISIJ Int. 54, 9–18 (2014).CrossRefGoogle Scholar
  29. 29.
    L. Li, Z. Liu, B. Li, H. Matsuura, and F. Tsukihashi, ISIJ Int. 55, 1337–1346 (2015).CrossRefGoogle Scholar
  30. 30.
    M.A. Ramirez-Argaez, A. Conejo, and A. Amaro-Villeda, ISIJ Int. 54, 1–8 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Chaendera and R.H. Eric, Effect of Slag Phase on Mixing and Mass Transfer in a Model Creusot Loire Uddeholm (CLU) Converter (The Mineral, Metals & Materials Society, 2017), pp. 45–61.Google Scholar
  32. 32.
    L.T. Costa and R.P. Tavares, Mass Transfer-Advancement in Process Modelling, ed. by M. Solecki (InTech, New York, 2015), pp. 149–167.Google Scholar
  33. 33.
    Q. Cao, A. Pitts, and L. Nastac, Ironmaking Steelmaking 45, 280–287 (2018).CrossRefGoogle Scholar
  34. 34.
    F.P. Incropera and D.P. DeWitt, Introduction to Heat Transfer (New York: Wiley, 2002).Google Scholar
  35. 35.
    J.C. Lamont and D.S. Scott, AIChE J. 16, 513–519 (1970).CrossRefGoogle Scholar
  36. 36.
    V. Sahajwalla, J.K. Brimacombe, and M.E. Salcudean, Steelmaking Conf., Proceedings ISS, Vol. 72 (1989), pp. 497–501.Google Scholar
  37. 37.
    M. Ramírez-Argáez and C. González-Rivera, The 3rd Pan American Materials Congress (2017).Google Scholar
  38. 38.
    L. Dong, S.T. Johansen, and T.A. Engh, Can. J. Metall. Mater. Sci. 31, 299–307 (1992).Google Scholar
  39. 39.
    P.H. Calderbank and M.B. Moo-Young, Chem. Eng. Sci. 16, 39–54 (1961).CrossRefGoogle Scholar
  40. 40.
    G.E. Fortescue and J.R.A. Pearson, Chem. Eng. Sci. 22, 1163–1176 (1967).CrossRefGoogle Scholar
  41. 41.
    L.P. Hung, C.S. Garbe, and W. Tsai, The 6th International Symposium on Gas Transfer at Water Surfaces (2010), pp. 17–21.Google Scholar
  42. 42.
    ANSYS Fluent Theory Guide 17.0, ANSYS Inc, 2016Google Scholar
  43. 43.
    P.J. Roache, ASME J. Fluids Eng. 71, 405–413 (1994).CrossRefGoogle Scholar
  44. 44.
    M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, and Y. Okazaki, Trans. ISIJ 27, 277–282 (1987).CrossRefGoogle Scholar
  45. 45.
    D.G.C. Robertson and B.B. Staples, Process Engineering of Pyrometallurgy (Institution of Mining and Metallurgy, London, 1974), pp. 51–59.Google Scholar
  46. 46.
    S. Taniguchi, S. Kawaguchi, and A. Kikuchi, Appl. Math. Model. 26, 249–262 (2002).CrossRefGoogle Scholar
  47. 47.
    Y. Ohga, S. Taniguchi, and J. Kikuchi, Tetsu-to-Hagane 71, S897 (1985).Google Scholar
  48. 48.
    M. Hirasawa, K. Mori, M. Sano, Y. Shimada, and Y. Okazaki, Tetsu-to-Hagane 71, S898 (1985).Google Scholar
  49. 49.
    S. Endo and M. Hasegawa, Tetsu-to-Hagane 71, S899 (1985).CrossRefGoogle Scholar
  50. 50.
    S. Joo and R.I.L. Guthrie, Metall. Trans. B 23, 765–778 (1992).CrossRefGoogle Scholar
  51. 51.
    S.P. Patil, D. Satish, M. Peranandhanathan, and D. Mazumdar, ISIJ Int. 50, 1117–1124 (2010).CrossRefGoogle Scholar
  52. 52.
    D.Mazumdar, Fluid flow, Particle motion and mixing in ladle metallurgy operations, PhD Thesis, McGill University, Montreal, 1985Google Scholar
  53. 53.
    Q. Ying, L. Yun, and L. Liu, Scaninject III: 3rd International Conference on Refining of Iron and Steel by Powder Injection (Lulea, Sweden: MEFOS, 1983).Google Scholar
  54. 54.
    O. Haida, T. Emi, S. Yamada, and F. Sudo, Scaninject II: 2nd International Conference on Injection Metallurgy (Lulea, Sweden: MEFOS, 1980).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Faculty of Engineering TechnologyKU LeuvenLeuvenBelgium
  2. 2.Department of Metallurgic Chemical Engineering, School of ChemistryNational Autonomous University of Mexico (UNAM)MexicoMexico
  3. 3.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingPeople’s Republic of China
  4. 4.Department of Materials EngineeringKU LeuvenHeverlee-LeuvenBelgium

Personalised recommendations