Advertisement

JOM

, Volume 70, Issue 9, pp 1844–1852 | Cite as

Micron-Level Layer-Wise Surface Profilometry to Detect Porosity Defects in Powder Bed Fusion of Inconel 718

  • Chris Barrett
  • Eric MacDonald
  • Brett Conner
  • Fred Persi
Additive Manufacturing: Striving Toward Quality Control
  • 106 Downloads

Abstract

Additive manufacturing (AM) enables a fabrication freedom and is transforming the manner in which high-value and high-performance structures are created. The aerospace industry stands to benefit from structures in which the weight is minimized, the materials provide good mechanical properties at extreme temperatures, and a swarm of distinct parts can be consolidated into a single non-assembled complex structure. However, for additive manufactured parts to be used in flight-critical applications, the quality of the resulting fabricated parts must be well understood in light of the lack of flight heritage. As AM is performed layer-by-layer, new opportunities exist to monitor the fabrication in situ and non-destructively, and to provide a qualify-as-you-go paradigm. In this study, a high-resolution laser line scan profilometer is used just after a layer has been selectively melted, and the sensor is mounted to the recoater arm to provide unobtrusive and inexpensive access to the top of the powder bed. The driving hypothesis of the effort was that fused and unfused powder would lie at different elevations, as the fused powder volume would consolidate and therefore become depressed. Consequently, this measurement could both verify the intended geometry and identify any lack of fusion defects. Furthermore, some preliminary anecdotal evidence has shown that spatter can also be identified, and thus profilometry can inform the minimization of contamination (build chamber argon flow, build layout strategies, etc.).

Notes

Acknowledgements

The work was supported by the US Army Aviation Applied Technology Directorate via Grant W911W6-17-C-0048 and was made possible with the assistance and cooperation of M-7 Technologies (Youngstown).

References

  1. 1.
    A.B. Spierings and G. Levy, Solid Freeform Fabrication Symposium Proceedings (2009), p. 342.Google Scholar
  2. 2.
    H. Meier and C. Haberland, Materialwiss. Werkstofftech. 39, 665 (2008).CrossRefGoogle Scholar
  3. 3.
    D.Q. Zhang, Q.Z. Cai, J.H. Liu, and R. Di Li, Adv. Mater. Res. 97–101, 3820 (2010).CrossRefGoogle Scholar
  4. 4.
    W.S. Land, B. Zhang, J. Ziegert, and A. Davies, Procedia Manuf. 1, 393 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Tang, P. Chris Pistorius, and J.L. Beuth, Addit. Manuf. 14, 39 (2017).CrossRefGoogle Scholar
  6. 6.
    W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).CrossRefGoogle Scholar
  7. 7.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  8. 8.
    L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel, Int. J. Mach. Tools Manuf. 121, 22 (2017).CrossRefGoogle Scholar
  9. 9.
    R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, and A.D. Rollett, JOM 69, 479 (2017).CrossRefGoogle Scholar
  10. 10.
    B.K. Foster, E.W. Reutzel, A.R. Nassar, B.T. Hall, S.W. Brown, and C.J. Dickman, in Solid Freeform Fabrication Symposium Proceedings (2015), p. 295.Google Scholar
  11. 11.
    S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Mater. Des. 95, 431 (2016).CrossRefGoogle Scholar
  12. 12.
    C. Barrett, J. Walker, R.E. Gutierrez, E. MacDonald, and B. Conner, in A Low Cost, High-Speed Optical Monitoring System for Tracking Spatter During Laser Powder Bed Fusion. Presented at the TMS 2018, Phoenix, AZ (2018).Google Scholar
  13. 13.
    T. Craeghs, F. Bechmann, S. Berumen, and J.-P. Kruth, Phys. Procedia 5B, 505 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Clijsters, T. Craeghs, S. Buls, K. Kempen, and J.-P. Kruth, Int. J. Adv. Manuf. Technol. 75, 108 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Lott, H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke, and J. Bültmann, Phys. Procedia 12A, 683 (2011).CrossRefGoogle Scholar
  16. 16.
    I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, J. Alloys Compd. 583, 404 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Doubenskaia, M. Pavlov, S. Grigoriev, E. Tikhonova, and I. Smurov, J. Laser Micro Nanoeng. 7, 236 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Chivel, Phys. Procedia 41, 904 (2013).CrossRefGoogle Scholar
  19. 19.
    J.A. Kanko, A.P. Sibley, and J.M. Fraser, J. Mater. Process. Technol. 231, 488 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Krauss, C. Eschey, and M. Zaeh, in Solid Freeform Fabrication Symposium Proceedings (2012), p. 999.Google Scholar
  21. 21.
    B. Lane, S. Moylan, E. Whitenton, and L. Ma, Rapid Prototyp. J. 22, 778 (2016).CrossRefGoogle Scholar
  22. 22.
    F. Bayle and M. Doubenskaia, Proc. SPIE 6985, 698505 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Grasso, V. Laguzza, Q. Semeraro, and B.M. Colosimo, J. Manuf. Sci. Eng. 139, 051001 (2017).CrossRefGoogle Scholar
  24. 24.
    S. Kleszczynski, J.Z. Jacobsmühlen, J.T. Sehrt, and G. Witt, in Solid Freeform Fabrication Symposium Proceedings (2012), p. 975.Google Scholar
  25. 25.
    J.Z. Jacobsmühlen, S. Kleszczynski, G. Witt, and D. Merhof, in Proceedings, 30th IEEE International Instrumentation and Measurement Technology Conference, (I2MTC 2013) (2013), p. 707.Google Scholar
  26. 26.
    B. Zhang, J. Ziegert, F. Farahi, and A. Davies, Addit. Manuf. 12A, 100 (2016).CrossRefGoogle Scholar
  27. 27.
    A. Neef, V. Seyda, D. Herzog, C. Emmelmann, M. Schönleber, and M. Kogel-Hollacher, Phys. Procedia 56, 82 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Islam, T. Purtonen, H. Piili, A. Salminen, and O. Nyrhilä, Phys. Procedia 41, 835 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Jay Dunbar, Analysis of the Laser Powder Bed Fusion Additive Manufacturing Process Through Experimental Measurement and Finite Element Modeling. Ph.D. thesis, The Pennsylvania State University. https://etda.libraries.psu.edu/catalog/28714 (2016).
  30. 30.
    B. Donaldson, Can Topography Scans Redraw the Metal Additive Inspection Map? (Additive Manuf., 2017), https://www.additivemanufacturing.media/blog/post/can-topography-scans-redraw-the-metal-additive-inspection-map/. Accessed 25 June 2018.
  31. 31.
    J. Mireles, S. Ridwan, P.A. Morton, A. Hinojos, and R.B. Wicker, Surf. Topogr. Metrol. Prop. 3, 034002 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Youngstown State UniversityYoungstownUSA
  2. 2.Grale TechnologiesYoungstownUSA

Personalised recommendations