Advertisement

JOM

pp 1–10 | Cite as

High Temperature Tensile Tests of the Lightweight 2099 and 2055 Al-Cu-Li Alloy: A Comparison

  • E. Balducci
  • L. Ceschini
  • S. Messieri
Aluminum: New Alloys and Heat Treatment

Abstract

The present study deals with the high temperature characterization of the unconventional, lightweight AA2099 and AA2055 Al-Cu-Li alloys (density = 2.63 g/cm3 and 2.71 g/cm3 respectively), which are widely employed for aerospace structural components thanks to their high specific strength at room temperature. The alloys have been characterized through tensile tests at 200°C and 250°C, after different overaging heat treatments, with the aim to simulate the variation of mechanical properties occurring in a component operating at high temperature. At 200°C, AA2099 alloy shows equivalent or superior performance compared with AA2055; therefore, it exhibits advantages in terms of specific strength due to its lower density; T1 precipitates, dominating AA2099 after overaging, are considered to provide effective strengthening. The reverse occurs at 250°C operating temperature, at which considerable improvements are offered by the combination of both Ω and ϑ′ precipitates, which are present in AA2055 matrix in all overaged conditions.

Notes

Acknowledgement

The authors gratefully acknowledge Ducati Spa for the technical support.

References

  1. 1.
    R.J. Rioja and J. Liu, Metall. Mater. Trans. A 43, 3325 (2012).  https://doi.org/10.1007/s11661-012-1155-z.CrossRefGoogle Scholar
  2. 2.
    C.J. Peel, B. Evans, C.A. Baker, D.A. Bennet, P.J. Gregson, and H.M. Flower, The development of aluminium-lithium alloys, in ed. by T.H. Sanders, E.A. Starke, Second International Conference on Aluminum Alloys (1984), pp. 363–392.Google Scholar
  3. 3.
    N.E. Prasad, A.A. Gokhale, and R.J.H. Wanhill, eds., Aluminium-Lithium Alloys: Processing, Properties, and Applications (Oxford: Butterworth-Heinemann, 2014).  https://doi.org/10.1016/B978-0-12-401698-9.00018-5.Google Scholar
  4. 4.
    Alcoa, ALLOY 2099-T83 AND 2099-T8E67 EXTRUSIONS (2005). https://www.arconic.com/hard_alloy_extrusions/catalog/pdf/alloy2099techsheet.pdf.
  5. 5.
    Arconic, Aluminum alloy 2055-T84 extrusions (2016).Google Scholar
  6. 6.
    European Commission—Climate Action. https://ec.europa.eu/clima/policies/transport/vehicles/proposal_en. Accessed 1 Jan 2018.
  7. 7.
    T. Warner, Mater. Sci. Forum 519–521, 1271 (2006).  https://doi.org/10.4028/www.scientific.net/MSF.519-521.1271.CrossRefGoogle Scholar
  8. 8.
    S. Katsikis, B. Noble, and S.J. Harris, Mater. Sci. Eng. A 485, 613 (2008).  https://doi.org/10.1016/j.msea.2007.10.020.CrossRefGoogle Scholar
  9. 9.
    D. Tsivoulas, Metall. Mater. Trans. A 46, 2342 (2015).  https://doi.org/10.1007/s11661-015-2894-4.CrossRefGoogle Scholar
  10. 10.
    Z. Gao, J.H. Chen, S.Y. Duan, X.B. Yang, and C.L. Wu, Acta Metall. Sin. (English Lett.) 29, 94–103 (2016).  https://doi.org/10.1007/s40195-016-0366-5.CrossRefGoogle Scholar
  11. 11.
    T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, and A. Deschamps, Mater. Sci. Eng. A 605, 119 (2014).  https://doi.org/10.1016/j.msea.2014.03.024.CrossRefGoogle Scholar
  12. 12.
    E. Balducci, L. Ceschini, S. Messieri, S. Wenner, and R. Holmestad, Mater. Des. 119, 54 (2017).  https://doi.org/10.1016/j.matdes.2017.01.058.CrossRefGoogle Scholar
  13. 13.
    B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, and M. Weyland, Acta Mater. 61, 2207 (2013).  https://doi.org/10.1016/j.actamat.2012.12.041.CrossRefGoogle Scholar
  14. 14.
    J.F. Li, P.L. Liu, Y.L. Chen, X.H. Zhang, and Z.Q. Zheng, Trans. Nonferrous Met. Soc. China (English Ed.) 25, 2103–2112 (2015).  https://doi.org/10.1016/s1003-6326(15)63821-3.CrossRefGoogle Scholar
  15. 15.
    C. Gao, Y. Luan, J.C. Yu, and Y. Ma, Trans. Nonferrous Met. Soc. China (English Ed.) 24, 2196–2202 (2014).  https://doi.org/10.1016/s1003-6326(14)63332-x.CrossRefGoogle Scholar
  16. 16.
    B.I. Rodgers and P.B. Prangnell, Acta Mater. 108, 55 (2016).  https://doi.org/10.1016/j.actamat.2016.02.017.CrossRefGoogle Scholar
  17. 17.
    G. Itoh, Q. Cui, and M. Kanno, Mater. Sci. Eng. A 211, 128 (1996).  https://doi.org/10.1016/0921-5093(95)10157-8.CrossRefGoogle Scholar
  18. 18.
    E. Gumbmann, W. Lefebvre, F. De Geuser, C. Sigli, and A. Deschamps, Acta Mater. 115, 104 (2016).  https://doi.org/10.1016/j.actamat.2016.05.050.CrossRefGoogle Scholar
  19. 19.
    B.-P. Huang and Z.-Q. Zheng, Acta Mater. 46, 4381 (1998).  https://doi.org/10.1016/S1359-6454(98)00079-2.CrossRefGoogle Scholar
  20. 20.
    M. Murayama and K. Hono, Scr. Mater. 44, 701 (2001).CrossRefGoogle Scholar
  21. 21.
    V. Araullo-Peters, B. Gault, F. De Geuser, A. Deschamps, and J.M. Cairney, Acta Mater. 66, 199 (2014).  https://doi.org/10.1016/j.actamat.2013.12.001.CrossRefGoogle Scholar
  22. 22.
    S.Y. Duan, C.L. Wu, Z. Gao, L.M. Cha, T.W. Fan, and J.H. Chen, Acta Mater. 129, 352 (2017).  https://doi.org/10.1016/j.actamat.2017.03.018.CrossRefGoogle Scholar
  23. 23.
    N. Ott, Y. Yan, S. Ramamurthy, S. Kairy, and N. Birbilis, Scr. Mater. 119, 17 (2016).  https://doi.org/10.1016/j.scriptamat.2016.03.021.CrossRefGoogle Scholar
  24. 24.
    Q. Liu, R. Hua Zhu, J. Feng Li, Y. Lai Chen, X. Hu Zhang, L. Zhang, and Z. Qiao Zheng, Trans. Nonferrous Met. Soc. China (English Ed.) 26, 607–619 (2016).  https://doi.org/10.1016/s1003-6326(16)64149-3.CrossRefGoogle Scholar
  25. 25.
    A.K. Khan and J.S. Robinson, Mater. Sci. Technol. 24, 1369 (2008).  https://doi.org/10.1179/174328408X262391.CrossRefGoogle Scholar
  26. 26.
    R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga, Acta Mater. 51, 4251 (2003).  https://doi.org/10.1016/S1359-6454(03)00253-2.CrossRefGoogle Scholar
  27. 27.
    K.S. Kumar, S.A. Brown, and J.R. Pickens, Acta Mater. 44, 1899 (1996).CrossRefGoogle Scholar
  28. 28.
    E. Balducci, L. Ceschini, S. Messieri, S. Wenner, and R. Holmestad, Mater. Sci. Eng. A 707, 221 (2017).  https://doi.org/10.1016/j.msea.2017.09.051.CrossRefGoogle Scholar
  29. 29.
    M. Romios, R. Tiraschi, C. Parrish, H.W. Babel, J.R. Ogren, and O.S. Es-Said, J. Mater. Eng. Perform. 14, 641 (2005).  https://doi.org/10.1361/105994905X64594.CrossRefGoogle Scholar
  30. 30.
    Y. Lin, Z. Zheng, S. Li, X. Kong, and Y. Han, Mater. Charact. 84, 88 (2013).  https://doi.org/10.1016/j.matchar.2013.07.015.CrossRefGoogle Scholar
  31. 31.
    A. Deschamps, M. Garcia, J. Chevy, B. Davo, and F. De Geuser, Acta Mater. 122, 32 (2017).  https://doi.org/10.1016/j.actamat.2016.09.036.CrossRefGoogle Scholar
  32. 32.
    D. Ortiz, J. Brown, M. Abdelshehid, P. DeLeon, R. Dalton, L. Mendez, J. Soltero, M. Pereira, M. Hahn, E. Lee, J. Ogren, R. Clark, J. Foyos, and O.S. Es-Said, Eng. Fail. Anal. 13, 170 (2006).  https://doi.org/10.1016/j.engfailanal.2004.10.008.CrossRefGoogle Scholar
  33. 33.
    V.G. Davydov, L.B. Ber, V.N. Ananiev, A.I. Orozov, and M. V. Samarina, The heat treatment effect on thermal stability of Al-Li alloys at low temperatures, in ICAA-6, 1998, pp. 985–990.Google Scholar
  34. 34.
    Y. Mou, J.M. Howe, and E.A. Starke, Metall. Mater. Trans. A. 26 A, 1591 (1995).CrossRefGoogle Scholar
  35. 35.
    J. Jabra, M. Romios, J. Lai, E. Lee, M. Setiawan, E.W. Lee, J. Witters, N. Abourialy, J.R. Ogren, R. Clark, T. Oppenheim, W.E. Frazier, and O.S. Es-Said, J. Mater. Eng. Perform. 15, 601 (2006).  https://doi.org/10.1361/105994906X136142.CrossRefGoogle Scholar
  36. 36.
    H. Ovri, E.A. Jägle, A. Stark, and E.T. Lilleodden, Mater. Sci. Eng. A 637, 162 (2015).  https://doi.org/10.1016/j.msea.2015.04.039.CrossRefGoogle Scholar
  37. 37.
    G.E. Totten and D.S. MacKenzie, Volume 2: Alloy production and Materials Manufacturing, in Handb. Alum. (2003), p. 731.Google Scholar
  38. 38.
    W.D. Callister and D.G. Rethwisch, Materials Science and Engineering (Hoboken: Wiley, 2011).Google Scholar
  39. 39.
    Y. Ma, X. Zhou, G.E. Thompson, T. Hashimoto, P. Thomson, and M. Fowles, Mater. Chem. Phys. 126, 46 (2011).  https://doi.org/10.1016/j.matchemphys.2010.12.014.CrossRefGoogle Scholar
  40. 40.
    S. Bai, P. Ying, Z. Liu, J. Wang, and J. Li, Mater. Sci. Eng. A 687, 8 (2017).  https://doi.org/10.1016/j.msea.2017.01.045.CrossRefGoogle Scholar
  41. 41.
    Y. Zhou, Z. Liu, S. Bai, P. Ying, and L. Lin, Mater. Charact. 123, 1 (2017).  https://doi.org/10.1016/j.matchar.2016.11.008.CrossRefGoogle Scholar
  42. 42.
    H. Qi, X.Y. Liu, S.X. Liang, X.L. Zhang, H.X. Cui, L.Y. Zheng, F. Gao, and Q.H. Chen, J. Alloys Compd. 657, 318 (2016).  https://doi.org/10.1016/j.jallcom.2015.10.094.CrossRefGoogle Scholar
  43. 43.
    S.J. Kang, T.-H. Kim, C.-W. Yang, J.I. Lee, E.S. Park, T.W. Noh, and M. Kim, Scr. Mater. 109, 68 (2015).  https://doi.org/10.1016/j.scriptamat.2015.07.020.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringAlma Mater Studiorum University of BolognaBolognaItaly
  2. 2.Department of Civil, Chemical, Environmental and Materials EngineeringAlma Mater Studiorum University of BolognaBolognaItaly
  3. 3.Ducati Motor HoldingBolognaItaly

Personalised recommendations