Advertisement

JOM

pp 1–7 | Cite as

Comparison of Multiphase Flow in a Continuous Casting Tundish Using Two Types of Industrialized Ladle Shrouds

  • Jiangshan Zhang
  • Shufeng Yang
  • Yongfeng Chen
  • Zhixin Chen
  • Jingwei Zhao
  • Jingshe Li
  • Zhengyi Jiang
Multiphase Flows in Materials Processing
  • 86 Downloads

Abstract

Plant trials were carried out to compare multiphase flow using a conventional ladle shroud (CLS) and a trumpet-shaped ladle shroud (TLS) in a steelmaking tundish. Steel splashing, slag exposure, smoke and flame were recorded to investigate the fluid flow during both transient and steady casting. A large eddy simulation model was employed to visualize the flow structure and obtain detailed flow information. The results showed that the TLS outperformed the CLS in relieving steel splashing during ladle change due to the braking effect of the TLS on the jet. During steady casting, a relatively calm melt bath was achieved with less exposed steel using the TLS, which is attributed to the reduced turbulence in the tundish. An eccentric tundish open eye was observed using the CLS, which is related to the misaligned flow pattern when the slide gate is partially open.

Notes

Acknowledgements

The authors appreciate the cooperation of Wuhu Xinxing Ductile Iron Pipes Co., Ltd. for carrying out the trials. The authors are indebted to the funding of National Nature Science Foundation of China (Nos. 51671100, 51674023). Thanks for the valuable discussion with Mr. Wenhan Ying from Zhejiang Tieshi Refractory Material Co., Ltd. and his technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Y. Sahai and T. Emi, Tundish Technology for Clean Steel Production (London: World Scientific, 2008), pp. 99–120.Google Scholar
  2. 2.
    K. Chattopadhyay, M. Isac, and R.I. Guthrie, ISIJ Int. 50, 331 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Zhang, S. Yang, J. Li, W. Yang, Y. Wang, and X. Guo, ISIJ Int. 55, 1684 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Sahai, Metall. Mater. Trans. B 47B, 2095 (2016).CrossRefGoogle Scholar
  5. 5.
    L. Zhang, JOM 65, 1138 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Chatterjee, D. Li, K. Chattopadhyay, Steel Res. Int. 88 (2017) (in Press).Google Scholar
  7. 7.
    J. Zhang, S. Yang, M. Li, Z. Chen, Z. Jiang, and J. Li, Ironmak. Steelmak. 44, 732 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Chatterjee, D. Li, and K. Chattopadhyay, Metall. Mater. Trans. B 49B, 756 (2018).CrossRefGoogle Scholar
  9. 9.
    G.A. Demasi, R.F. Hartmann, 64th Steelmaking Conference Proceedings, 29 March–1 April, 1981, Toronto, Canada.Google Scholar
  10. 10.
    G. Wen, Y. Huang, P. Tang, and M. Zhu, J. Chongqing Univ. 34, 69 (2011).Google Scholar
  11. 11.
    B.G. Thomas, H. Bai, 84th Steelmaking Conference Proceedings, 25–28 March 2001, Maryland, USA.Google Scholar
  12. 12.
    B. Becker, N. Prabhu, 74th Steelmaking Conference Proceedings, 14–17 April, 1991, Washington, USA.Google Scholar
  13. 13.
    M. Nadif, J. Lehmann, M. Burty, and J. Domgin, Rev. Métall. 104, 493 (2007).CrossRefGoogle Scholar
  14. 14.
    L. Zhang and B.G. Thomas, ISIJ Int. 43, 271 (2003).CrossRefGoogle Scholar
  15. 15.
    K. Chattopadhyay, F.G. Liu, M. Isac, and R.I.L. Guthrie, Ironmak. Steelmak. 38, 112 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Chatterjee and K. Chattopadhyay, ISIJ Int. 55, 1416 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Zhang, J. Li, Y. Yan, Z. Chen, S. Yang, J. Zhao, and Z. Jiang, Metall. Mater. Trans. B 47B, 495 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Tanaka, R. Nishihara, I. Kitagawa, and R. Tsujino, ISIJ Int. 33, 1238 (1993).CrossRefGoogle Scholar
  19. 19.
    J.L. Xia and T. Ahokainen, Metall. Mater. Trans. B 32B, 733 (2001).CrossRefGoogle Scholar
  20. 20.
    X. Lan and J. Khodadadi, Int. J. Heat Mass Tran. 44, 953 (2001).CrossRefGoogle Scholar
  21. 21.
    L. Brinkmeyer, S.D. Melville, 77th Steelmaking Conference Proceedings, 20–23 March, 1994, Chicago, USA.Google Scholar
  22. 22.
    R. Kalter, M. Tummers, S. Kenjereš, B. Righolt, and C. Kleijn, Int. J. Heat Fluid Flow 44, 365 (2013).CrossRefGoogle Scholar
  23. 23.
    D. Chatterjee, Am. J. Min. Metall. 4, 1 (2017).CrossRefGoogle Scholar
  24. 24.
    S. Chatterjee, D. Li, J. Leung, J. Sengupta, and K. Chattopadhyay, Metall. Mater. Trans. B 48B, 1035 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jiangshan Zhang
    • 1
    • 2
  • Shufeng Yang
    • 1
  • Yongfeng Chen
    • 3
  • Zhixin Chen
    • 2
  • Jingwei Zhao
    • 2
  • Jingshe Li
    • 1
  • Zhengyi Jiang
    • 2
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingHaidian District, BeijingPeople’s Republic of China
  2. 2.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  3. 3.Wuhu Xinxing Ductile Iron Pipes Co., LtdSanshan District, Wuhu CityPeople’s Republic of China

Personalised recommendations