Advertisement

JOM

, Volume 70, Issue 9, pp 1776–1784 | Cite as

Microstructural Investigations in Metals Using Atom Probe Tomography with a Novel Specimen-Electrode Geometry

  • David J. Larson
  • Robert M. Ulfig
  • Dan R. Lenz
  • Joseph H. Bunton
  • Jeff D. Shepard
  • Timothy R. Payne
  • Katherine P. Rice
  • Yimeng Chen
  • Ty J. Prosa
  • Dan J. Rauls
  • Thomas F. Kelly
  • Niyanth Sridharan
  • Suresh Babu
3D Nanoscale Characterization of Metals, Minerals, and Materials
  • 214 Downloads

Abstract

A new atom probe design is presented along with data showing spectral performance and selected microstructural characterization examples. The instrument includes a curved reflectron, a 532-nm laser, and an integrated, fixed-position, counter electrode in a configuration with moderate electric field enhancement that includes improvements in ease of use and cost of ownership. Both voltage-pulsed and laser-pulsed performance is shown for a variety of materials including Al, Si, W, 316 stainless steel, Inconel 718, and GaN. Characterization of grain boundaries and phase boundaries, including correlation with transmission electron backscatter diffraction results in Inconel 718, is shown. A detailed case study of the resultant microstructure between laser-beam and electron-beam additive manufacturing paths in Inconel 718 is also presented.

Notes

Acknowledgements

The authors thank the entire team at the CAMECA Atom Probe Technology Center in Madison, WI. This article has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this article, or allow others to do so, for U.S. government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Authors with a CAMECA affiliation acknowledge a financial conflict of interest with respect to the topic of this research.

Supplementary material

11837_2018_2982_MOESM1_ESM.pdf (920 kb)
Supplementary material 1 (DOCX 920 kb)

References

  1. 1.
    E.W. Müller, J.A. Panitz, and S.B. McLane, Rev. Sci. Instrum. 39, 83 (1968).CrossRefGoogle Scholar
  2. 2.
    B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Atom Probe Microscopy (New York: Springer, 2012).CrossRefGoogle Scholar
  3. 3.
    D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, and T.F. Kelly, Local Electrode Atom Probe Tomography: A User’s Guide (New York: Springer, 2013).CrossRefGoogle Scholar
  4. 4.
    M.K. Miller and R.G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. (Boston: Springer, 2014).Google Scholar
  5. 5.
    W. Lefebvre, F. Vurpillot, and X. Sauvage, Atom Probe Tomography: Put Theory into Practice (London: Academic Press, 2016).Google Scholar
  6. 6.
    A. Cerezo, G.D.W. Smith, and A.R. Waugh, J. Phys. C 9, 329 (1984).Google Scholar
  7. 7.
    M.K. Miller, J. Phys. 47-C2, 493 (1986).Google Scholar
  8. 8.
    A. Cerezo, T.J. Godfrey, and G.D.W. Smith, Rev. Sci. Instrum. 59, 862 (1988).Google Scholar
  9. 9.
    D. Blavette, B. Deconihout, A. Bostel, J.M. Sarrau, M. Bouet, and A. Menand, Rev. Sci. Instrum. 64, 2911 (1993).CrossRefGoogle Scholar
  10. 10.
    T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, and S.S. Bajikar, Ultramicroscopy 62, 29 (1996).CrossRefGoogle Scholar
  11. 11.
    T.F. Kelly and D.J. Larson, Mat. Char. 44, 59 (2000).CrossRefGoogle Scholar
  12. 12.
    T.F. Kelly, T.T. Gribb, J.D. Olson, R.L. Martens, J.D. Shepard, S.A. Wiener, T.C. Kunicki, R.M. Ulfig, D.R. Lenz, E.M. Strennen, E. Oltman, J.H. Bunton, and D.R. Strait, Microsc. Microanal. 10, 373 (2004).CrossRefGoogle Scholar
  13. 13.
    M.K. Miller, Microsc. Microanal. 10, 150 (2004).CrossRefGoogle Scholar
  14. 14.
    A. Bostel, M. Yavor, L. Renaud, and B. Deconihout, patent 8074292 (6 December 2011).Google Scholar
  15. 15.
    O. Nishikawa and M. Kimoto, Appl. Surf. Sci. 76/77, 424 (1994).CrossRefGoogle Scholar
  16. 16.
    D.J. Larson, C.-M. Teng, P.P. Camus, and T.F. Kelly, Appl. Surf. Sci. 87/88, 446 (1994).CrossRefGoogle Scholar
  17. 17.
    K. Thompson, D.J. Larson, and R. Ulfig, Microsc. Microanal. 11, 882 (2005).Google Scholar
  18. 18.
    T.F. Kelly and D.J. Larson, MRS Bull. 37, 150 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Cerezo, P.H. Clifton, S. Lozano-Perez, P. Panayi, and G. Sha, Microsc. Microanal. 13, 408 (2007).CrossRefGoogle Scholar
  20. 20.
    P.H. Clifton, T.J. Gribb, S.S.A. Gerstl, R.M. Ulfig, and D.J. Larson, Microsc. Microanal. 14, 454 (2008).CrossRefGoogle Scholar
  21. 21.
    K.P. Rice, Y. Chen, R.M. Ulfig, D. Lenz, J. Bunton, M. Van Dyke, and D.J. Larson, Microsc. Microanal. 23, 42 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Gomer, Field Emission and Field Ionization (Cambridge: Harvard University Press, 1961).Google Scholar
  23. 23.
    S.S. Bajikar, T.F. Kelly, and P.P. Camus, Appl. Surf. Sci. 94/95, 464 (1996).CrossRefGoogle Scholar
  24. 24.
    Y.B. Yildir, K.M. Prasad, and D. Zheng, Control Dyn. Syst. 59, 167 (1993).CrossRefGoogle Scholar
  25. 25.
    B.P. Geiser, T.F. Kelly, D.J. Larson, J. Schneir, and J.P. Roberts, Microsc. Microanal. 13, 437 (2007).CrossRefGoogle Scholar
  26. 26.
    P.J. Warren, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 73, 261 (1998).CrossRefGoogle Scholar
  27. 27.
    G.S. Rohrer, J. Mater. Sci. 46, 5881 (2011).CrossRefGoogle Scholar
  28. 28.
    K. Babinsky, R. De Kloe, H. Clemens, and S. Primig, Ultramicroscopy 144, 9 (2014).  https://doi.org/10.1016/j.ultramic.2014.04.003.CrossRefGoogle Scholar
  29. 29.
    K.P. Rice, Y. Chen, T.J. Prosa, and D.J. Larson, Microsc. Microanal. 22, 583 (2016).CrossRefGoogle Scholar
  30. 30.
  31. 31.
    K. Thompson, D.J. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  32. 32.
    M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson, Microsc. Microanal. 13, 428 (2007).CrossRefGoogle Scholar
  33. 33.
    D.J. Larson, D.T. Foord, A.K. Petford-Long, A. Cerezo, and G.D.W. Smith, Nanotechnology 10, 45 (1999).CrossRefGoogle Scholar
  34. 34.
    D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
  35. 35.
    T. Skidmore, R.G. Buchheit, and M.C. Juhas, Scr. Mater. 50, 873 (2004).CrossRefGoogle Scholar
  36. 36.
    B.W. Krakauer and D.N. Seidman, Phys. Rev. B 48, 6724 (1993).CrossRefGoogle Scholar
  37. 37.
    B. Geddes, H. Leon, and H. Xiao, Phases and Microstructure of Superalloys (Washington, DC: ASM International, 2011).Google Scholar
  38. 38.
    A.J. Detor, Metall. Mater. Trans. A 1 (2017).Google Scholar
  39. 39.
    P.J. Phillips, D. McAllister, Y. Gao, D. Lv, R.E.A. Williams, B. Peterson, Y. Wang, and M.J. Mills, Appl. Phys. Lett. 100, 211913 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Tian, D. Mcallister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 45A, 4470 (2014).CrossRefGoogle Scholar
  41. 41.
    D.P. McAllister, Shearing Mechanisms and Complex Particle Growth in Nickel Superalloy 718 (Columbus: Ohio State University, 2016).Google Scholar
  42. 42.
    R. Cozar and A. Pineau, Metall. Trans. 4, 47 (1973).CrossRefGoogle Scholar
  43. 43.
    J.L. Burger, R.R. Biederman, and W.H. Couts, in Superalloy 718 Metall. Appl. (TMS International, 1989), pp. 207–217.Google Scholar
  44. 44.
    K.A. Unocic, R.R. Dehoff, T. Lolla, S.S. Babu, W.J. Sames, K.A. Unocic, R.R. Dehoff, and S.S. Babu, J. Mater. Res. 29, 1920 (2014).CrossRefGoogle Scholar
  45. 45.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  46. 46.
    K.T. Makiewicz, Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718 (Columbus: Ohio State University, 2013).Google Scholar
  47. 47.
    T. Alam, M. Chaturverdi, S.P. Ringer, and J.M. Cairney, Mater. Sci. Eng. A 527, 7770 (2010).CrossRefGoogle Scholar
  48. 48.
    M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith, Atom Probe Field Ion Microscopy (Oxford: Oxford University Press, 1996).Google Scholar
  49. 49.
    M.K. Miller, S.S. Babu, and M.G. Burke, Mater. Sci. Eng. A 270, 14 (1999).CrossRefGoogle Scholar
  50. 50.
    M.K. Miller, S.S. Babu, and M.G. Burke, Mater. Sci. Eng. A 327, 84 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • David J. Larson
    • 1
  • Robert M. Ulfig
    • 1
  • Dan R. Lenz
    • 1
  • Joseph H. Bunton
    • 1
  • Jeff D. Shepard
    • 1
  • Timothy R. Payne
    • 1
  • Katherine P. Rice
    • 1
  • Yimeng Chen
    • 1
  • Ty J. Prosa
    • 1
  • Dan J. Rauls
    • 1
  • Thomas F. Kelly
    • 1
  • Niyanth Sridharan
    • 2
  • Suresh Babu
    • 2
    • 3
  1. 1.CAMECA Instruments Inc.MadisonUSA
  2. 2.Material Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.University of TennesseeKnoxvilleUSA

Personalised recommendations