, Volume 71, Issue 1, pp 323–328 | Cite as

Behavior of Titanium During the Smelting of Vanadium Titanomagnetite Metallized Pellets in an Electric Furnace

  • Shuai Wang
  • Yufeng GuoEmail author
  • Tao Jiang
  • Feng ChenEmail author
  • Fuqiang Zheng
  • Lingzhi Yang
  • Minjun Tang
Electric Arc Smelting


The suppression of titanium oxide reduction enables both successful separation of iron from slag and smooth production operations for the smelting of vanadium titanomagnetite. This study investigates the distribution behavior of titanium between the hot metal and enriched titanium slag during the electric furnace smelting of vanadium titanomagnetite metallized pellets. Activity calculations indicate that the TiO2 activity decreases with increasing amounts of CaO and MgO, whereas the TiO2 activity increases with smelting temperature. Additionally, high temperature experiments demonstrate that the titanium distribution ratio between the molten iron and titanium slag decreases with increasing CaO content in the slag. With the presence of high CaO content, increasing MgO content does not have a significant influence on the titanium distribution ratio. The titanium distribution ratio decreases with an increase in slag optical basicity but increases with an increment of the smelting temperature.


  1. 1.
    F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu, JOM 68, 1476 (2016).CrossRefGoogle Scholar
  2. 2.
    H.G. Du, Principles of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), pp. 1–10.Google Scholar
  3. 3.
    Y.H. Xue, J.H. Wu, Y.C. Feng, L. Dai, X.H. Bi, X. Li, T. Zhu, S.B. Tang, and M.F. Chen, Aerosol Air Qual. Res. 10, 367 (2010).CrossRefGoogle Scholar
  4. 4.
    Y.G. Teng, X.G. Tuo, S.J. Ni, C.J. Zhang, and Z.Q. Xu, Chin. J. Geochem. 22, 253 (2003).CrossRefGoogle Scholar
  5. 5.
    W.G. Fu, Y.C. Wen, H.E. Xie, and J. Iron, Steel Res. Int. 18, 7 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Zhao, L. Wang, D. Chen, H. Zhao, Y. Liu, and T. Qi, Trans. Nonferrous Met. Soc. China 25, 1325 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).CrossRefGoogle Scholar
  8. 8.
    G.J. Cheng, X.X. Xue, T. Jiang, and P.N. Duan, Metall. Mater. Trans. B 47, 1713 (2016).CrossRefGoogle Scholar
  9. 9.
    X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).CrossRefGoogle Scholar
  10. 10.
    B.C. Jena and I.G. Reilly, Miner. Eng. 8, 159 (1995).CrossRefGoogle Scholar
  11. 11.
    W. Geyser, W.S. Steinberg, J. Nell, and J.S. Afr, Inst. Min. Metall. 111, 707 (2011).Google Scholar
  12. 12.
    T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Zhao, E. Jak, P. Hayes, and J. Iron, Steel Res. Int. 16, 1172 (2009).Google Scholar
  14. 14.
    V.E. Roshchin, A.V. Asanov, and A.V. Roshchin, Russ. Metall. 11, 1001 (2010).CrossRefGoogle Scholar
  15. 15.
    Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, J. Alloys Compd. 706, 546 (2017).CrossRefGoogle Scholar
  16. 16.
    Y.X. Liu, J.L. Zhang, G.H. Zhang, K.X. Jiao, and K.C. Chou, Ironmak. Steelmak. 44, 609 (2016).CrossRefGoogle Scholar
  17. 17.
    F.X. Peng, Iron Steel Vanadium Titan. 15, 58 (1994).Google Scholar
  18. 18.
    F. Zheng, Y. Guo, G. Qiu, F. Chen, S. Wang, Y. Sui, T. Jiang, and L. Yang, J. Hazard. Mater. 344, 490 (2018).CrossRefGoogle Scholar
  19. 19.
    L.A. Dedushev, S.I. Filippov, Izv. Vyssh. Ucheb. Zaved. Chern. Met. 16 (1973).Google Scholar
  20. 20.
    S.H. Lei and T. Lei, Yunnan Metal. 36, 42 (2007).Google Scholar
  21. 21.
    H.M. Liu, H. Du, Z.P. Yang, G.D. Li, and K. Du, Acta Metall. Sin. 28, 47 (1992).Google Scholar
  22. 22.
    Z.Y. Wang, J.L. Zhang, X.D. Xing, and Z.J. Liu, Trans. Nonferr. Met. Soc. China 25, 1640 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, and M. Tang, JOM 69, 1646 (2017).CrossRefGoogle Scholar
  24. 24.
    D. Gaskell, Trans. Iron Steel Inst. Jpn. 22, 997 (1982).CrossRefGoogle Scholar
  25. 25.
    J.A. Duffy, J. Chem. Educ. 73, 1138 (1996).CrossRefGoogle Scholar
  26. 26.
    X.H. Huang, Principles of iron and steel metallurgy (Beijing: Metallurgy Industry Press, 2013), pp. 295–300.Google Scholar
  27. 27.
    ISO 10280-1991, Steel and iron-Determination of titanium content-Diantipyrylmethane spectrometric method, (1991).Google Scholar
  28. 28.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad 54, 35 (2016).CrossRefGoogle Scholar
  29. 29.
    Y.Y. He, Q.C. Liu, J. Yang, B.N. Yang, M.H. Long, H.M. Zheng, C.W. Liu, and M. Wei, Adv. Mater. Res. 146, 1911 (2011).Google Scholar
  30. 30.
    Y. Morizane, B. Ozturk, and R.J. Fruehan, Metall. Mater. Trans. B 30B, 29 (1999).CrossRefGoogle Scholar
  31. 31.
    C. Yao, J. Zhang, X. Li, Y. Zhang, and C. Zhang, The Minerals, Metals & Materials Society 2015-144th Annual Meeting & Exhibition (2015), p. 887. Scholar
  32. 32.
    X.X. Xue and P.N. Duan, Acta Metall. Sin. 36, 1172 (2000).Google Scholar
  33. 33.
    C. Ariyo, P. Gonzalez, and L. Holappa, Steel Res. Int. 76, 284 (2005).CrossRefGoogle Scholar
  34. 34.
    B. Yan and J. Zhang, Steel Res. Int. 81, 742 (2010).CrossRefGoogle Scholar
  35. 35.
    H.G. Du and F.M. Shen, J. Northeast. Univ. Nat. Sci. 7, 107 (1986).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations