Advertisement

JOM

, Volume 71, Issue 1, pp 329–335 | Cite as

Behavior of Silicon During Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets in an Electric Furnace

  • Shuai Wang
  • Yufeng GuoEmail author
  • Tao Jiang
  • Feng Chen
  • Fuqiang Zheng
  • Lingzhi Yang
Electric Arc Smelting
  • 85 Downloads

Abstract

The behavior of silicon during smelting of vanadium titanomagnetite metallized pellets in an electric furnace has been investigated thermodynamically and experimentally. Thermodynamic calculations indicated that the activities of free oxygen ion and silicate increase with increasing CaO and MgO content in the titanium slag, whereas silica activity decreases as CaO and MgO increase. High-temperature experiments demonstrated that the Si content in the molten iron and distribution ratio of silicon between metal and slag decreased with suitable additions of CaO and MgO, but increased with smelting temperature. The Si content in the iron positively correlated with the Ti content in the iron but showed no obvious relationship with the V content in the iron. The Si and Ti contents increased with increasing smelting temperature. The Si content should be controlled below about 0.2 wt.% for effective and comprehensive smelting of vanadium titanomagnetite.

Supplementary material

11837_2018_2922_MOESM1_ESM.pdf (81 kb)
Supplementary material 1 (PDF 81 kb)

References

  1. 1.
    H.G. Du, Principles of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), pp. 1–8.Google Scholar
  2. 2.
    F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu, JOM 68, 1476 (2016).CrossRefGoogle Scholar
  3. 3.
    W.G. Fu, Y.C. Wen, H.E. Xie, and J. Iron, Steel Res. Int. 18, 7 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).CrossRefGoogle Scholar
  5. 5.
    G.J. Cheng, X.X. Xue, T. Jiang, and P.N. Duan, Metall. Mater. Trans. B 47, 1713 (2016).CrossRefGoogle Scholar
  6. 6.
    X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).CrossRefGoogle Scholar
  7. 7.
    B.C. Jena, W. Dresler, and I.G. Reilly, Miner. Eng. 8, 159 (1995).CrossRefGoogle Scholar
  8. 8.
    W. Geyser, W.S. Steinberg, J. Nell, and J.S. Afr, Inst. Min. Metall. 111, 707 (2011).Google Scholar
  9. 9.
    V.E. Roshchin, A.V. Asanov, and A.V. Roshchin, Russ. Metall. 11, 1001 (2010).CrossRefGoogle Scholar
  10. 10.
    Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, J. Alloys Compd. 706, 546 (2017).CrossRefGoogle Scholar
  11. 11.
    C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, JOM 69, 1801 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Li, M.S. Chu, J. Tang, Z.G. Liu, C. Feng, and Y.T. Tang, JOM 69, 1751 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, and M. Tang, JOM 69, 1646 (2017).CrossRefGoogle Scholar
  14. 14.
    T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).CrossRefGoogle Scholar
  15. 15.
    J.R. Rawling and J.F. Elliott, Trans. Am. Inst. Min. Metall. Pet. Eng. 233, 1539 (1965).Google Scholar
  16. 16.
    M. Ashizuka, M. Tokuda, and M. Ohtani, Tetsu to Hagane 54, 1437 (1968).CrossRefGoogle Scholar
  17. 17.
    A. Adachi, K. Ogino, and S. Hara, Trans. Iron Steel Inst. Jap. 9, 153 (1969).Google Scholar
  18. 18.
    T. Shimoo and Y. Kobayashi, Nippon Kinzoku Gakkaishi 56, 1414 (1992).Google Scholar
  19. 19.
    H. Sun, K. Mori, and R.D. Pehlke, Metall. Trans. B 24B, 113 (1993).CrossRefGoogle Scholar
  20. 20.
    J.C. Fulton, N.J. Grant, and J. Chipman, JOM 5, 185 (1953).CrossRefGoogle Scholar
  21. 21.
    Z. Guo, T. Lou, L. Zhang, L. Zhang, and Z. Sui, Acta Metall. Sin. (Engl. Lett.) 20, 9 (2007).CrossRefGoogle Scholar
  22. 22.
    X.H. Huang, Principles of Iron and Steel Metallurgy, 4th ed. (Beijing: Metallurgical Industry Press, 2013), pp. 247–248. (454–461).Google Scholar
  23. 23.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad 54, 35 (2016).CrossRefGoogle Scholar
  24. 24.
    B. Ozturk and R.J. Fruehan, Metall. Trans. B 16, 121 (1985).CrossRefGoogle Scholar
  25. 25.
    X.S. Zhang, J.L. Zhang, H. Guo, X. Zhao, and J.C. Song, J. Univ. Sci. Technol. Beijing 30, 594 (2008).Google Scholar
  26. 26.
    E.T. Turkdogan, Metall. Trans. B 9, 163 (1978).CrossRefGoogle Scholar
  27. 27.
    Y. Morizane, B. Ozturk, and R. Fruehan, Metall. Mater. Trans. B 30, 29 (1999).CrossRefGoogle Scholar
  28. 28.
    E. Turkdogan, Trans. Iron Steel Inst. Jap. 24, 591 (1984).CrossRefGoogle Scholar
  29. 29.
    A.J. Andersson, M.T. Andersson, and P.G. Jönsson, Steel Res. Int. 75, 294 (2004).CrossRefGoogle Scholar
  30. 30.
    P.C. Hess, Can. Mineral. 15, 162 (1977).Google Scholar
  31. 31.
    Y. Kang, D. Sichen, and K. Morita, ISIJ Int. 47, 805 (2007).CrossRefGoogle Scholar
  32. 32.
    M.Y. Yu, Ironmaking 3, 1 (1988).Google Scholar
  33. 33.
    M. Meraikib, Ironmaking Steelmaking 27, 280 (2000).CrossRefGoogle Scholar
  34. 34.
    J.C. Fulton and J. Chipman, JOM 6, 1136 (1954).CrossRefGoogle Scholar
  35. 35.
    W. Ding and S.E. Olsen, ISIJ Int. 40, 850 (2000).CrossRefGoogle Scholar
  36. 36.
    W.S. Steinberg, University of Pretoria, Ph.D. Thesis (2009).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shuai Wang
    • 1
  • Yufeng Guo
    • 1
    Email author
  • Tao Jiang
    • 1
  • Feng Chen
    • 1
  • Fuqiang Zheng
    • 1
  • Lingzhi Yang
    • 1
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations