JOM

pp 1–9 | Cite as

Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

  • Volkan Kilicli
  • Xiaojun Yan
  • Nathan Salowitz
  • Pradeep K. Rohatgi
Metal and Polymer Matrix Composites
  • 38 Downloads

Abstract

Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

Notes

Acknowledgements

The author Dr. Volkan Kilicli is thankful to TÜBİTAK (The Scientific and Technological Research Council of Turkey). He has been supported by the BİDEB-2219 postdoctoral research scholarship program. The author Dr. Xiaojun Yan is thankful to Dalian University, China, for financial support as a visiting scholar.

References

  1. 1.
    S. van der Zwaag, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science (Dordrecht: Springer, 2008), pp. 1–18.Google Scholar
  2. 2.
    S.K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Veinheim: Wiley, 2009), pp. 1–28.Google Scholar
  3. 3.
    M. Nosonovsky and P.K. Rohatgi, Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials (New York: Springer, 2011), pp. 1–122.CrossRefGoogle Scholar
  4. 4.
    M. Kessler, Proc. Inst. Mech. Eng. Part G-J Aerosp. Eng. 221, 479 (2007).CrossRefGoogle Scholar
  5. 5.
    R.P. Wool, Soft Matter 4, 400 (2008).CrossRefGoogle Scholar
  6. 6.
    D.Y. Wu, S. Meure, and D. Solomon, Prog. Polym. Sci. 33, 479 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Yuan, T. Yin, M. Rong, and M. Zhang, Express Polym. Lett. 2, 238 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Samadzadeh, S.H. Boura, M. Peikari, S. Kasiriha, and A. Ashrafi, Prog. Org. Coat. 68, 159 (2010).CrossRefGoogle Scholar
  9. 9.
    B. Aïssa, D. Therriault, E. Haddad, and W. Jamroz, Adv. Mater. Sci. Eng. 2012, 1 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Zhang and G. Li, Prog. Polym. Sc. 57, 32 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Bekas, K. Tsirka, D. Baltzis, and A. Paipetis, Compos. Part B Eng. 87, 92 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Urdl, A. Kandelbauer, W. Kern, U. Müller, M. Thebault, and E. Zikulnig-Rusch, Prog. Org. Coat. 104, 232 (2017).CrossRefGoogle Scholar
  13. 13.
    P.K. Rohatgi, A. Dorri, B.F. Schultz, and J. Ferguson, Paper presented at the 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8)-TMS 2013 Annual Meeting and Exhibition, Waikoloa, HI, TMS, 2013.Google Scholar
  14. 14.
    J. Ferguson, B.F. Schultz, and P.K. Rohatgi, JOM 66, 866 (2014).CrossRefGoogle Scholar
  15. 15.
    A.D. Moghadam, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, JOM 66, 872 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Alaneme and M. Bodunrin, Appl. Mater. Today 6, 9 (2017).CrossRefGoogle Scholar
  17. 17.
    M.V. Manuel and G.B. Olson, Paper presented at the 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, the Netherlands, 2007.Google Scholar
  18. 18.
    A.C. Ruzek, M.S. Thesis, University of Wisconsin-Milwaukee, 2009.Google Scholar
  19. 19.
    S.K. Misra, M.S. Thesis, University of Wisconsin-Milwaukee, 2013.Google Scholar
  20. 20.
    M. Hassan, M. Mehrpouya, S. Emamian, and M. Sheikholeslam, Adv. Mater. Res. 701, 87 (2013).CrossRefGoogle Scholar
  21. 21.
    P. Rohatgi, Mater. Sci. Eng. A 619, 73 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Ferguson, B. Schultz, and P. Rohatgi, Mater. Sci. Eng. A 620, 85 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Martinez-Lucci, R. Amano, P. Rohatgi, and B. Schultz, Paper presented at the 3rd Energy Nanotechnology International Conference-ENIC2008, Jacksonville, FL, 2008.Google Scholar
  24. 24.
    J. Martinez-Lucci, R. Amano, P. Rohatgi, and B. Schultz, Paper presented at the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, ASME, 2008.Google Scholar
  25. 25.
    J. Martinez-Lucci, R. Amano, P. Rohatgi, B. Schultz, and A. Ruzek, Paper presented at the 7th International Energy Conversion Engineering Conference, Denver, CO, 2009.Google Scholar
  26. 26.
    J. Martinez-Lucci, A. Ruzek, S. Misra, P. Rohatgi, and R. Amano, Mod. Cast. 101, 24 (2011).Google Scholar
  27. 27.
    J. Martinez-Lucci, A. Ruzek, S.K. Misra, P.K. Rohatgi, and R.S. Amano, AFS Trans. 101, 187 (2011).Google Scholar
  28. 28.
    J. Martinez-Lucci, R. Amano, and P. Rohatgi, Heat Mass Transf. 53, 825 (2017).CrossRefGoogle Scholar
  29. 29.
    P.E. Leser, J.A. Newman, S.W. Smith, W.P. Leser, R.A. Wincheski, T.A. Wallace, E.H. Glaessgen, and R.S. Piascik, NASA Technical Reports Server-NTRS, 2014. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140006911.pdf.
  30. 30.
    X. Zheng, Y.-N. Shi, and K. Lu, Mater. Sci. Eng. A 561, 52 (2013).CrossRefGoogle Scholar
  31. 31.
    R. Lumley, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, ed. S. van der Zwaag (Amsterdam: Springer, 2007), p. 219.CrossRefGoogle Scholar
  32. 32.
    S. Hautakangas, H. Schut, S. van der Zwaag, P. Rivera Diaz del Castillo, and N. van Dijk, Paper presented at the 1st International Conference on Self Healing Materials, Noordwijk aan Zee, the Netherlands, Springer, 2007.Google Scholar
  33. 33.
    S. Hautakangas, H. Schut, N. Van Dijk, P.R.D. del Castillo, and S. van der Zwaag, Scr. Mater. 58, 719 (2008).CrossRefGoogle Scholar
  34. 34.
    S. Van der Zwaag, N. Van Dijk, H. Jonkers, S. Mookhoek, and W. Sloof, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1689 (2009).CrossRefGoogle Scholar
  35. 35.
    S. Van der Zwaag, Bull. Pol. Acad. Sci. Chem. 58, 227 (2010).Google Scholar
  36. 36.
    K.K. Alaneme and O.I. Omosule, J. Miner. Mater. Charact. Eng. 3, 1 (2014).Google Scholar
  37. 37.
    G. Xu and M. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013).CrossRefGoogle Scholar
  38. 38.
    B. Grabowski and C.C. Tasan, Self-Healing Materials, ed. M.D. Hager, S. van der Zwaag, and U.S. Schubert (Basel: Springer, 2016), p. 387.CrossRefGoogle Scholar
  39. 39.
    R. Lumley, A. Morton, and I. Polmear, Acta Mater. 50, 3597 (2002).CrossRefGoogle Scholar
  40. 40.
    R. Djugum, R. Lumley, and I. Polmear, Paper presented at the 2nd International Conference on Self Healing Materials, Chicago, IL, 2009.Google Scholar
  41. 41.
    N. Shinya, J. Kyono, K. Laha, and C. Masuda, Paper presented at the 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, the Netherlands, Springer, 2007.Google Scholar
  42. 42.
    J. Van Humbeeck, Mater. Sci. Eng. A 273, 134 (1999).CrossRefGoogle Scholar
  43. 43.
    M.V. Manuel, Ph.D. Dissertation, Northwestern University, 2007.Google Scholar
  44. 44.
    M. Clara Wright, M. Manuel, and T. Wallace, NASA Technical Reports Server-NTRS, 2013. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140013299.pdf.
  45. 45.
    M. Manuel, Self-Healing Materials: Fundamentals, Design Strategies, and Applications, ed. S.K. Ghosh (Veinheim: Wiley, 2009), p. 251.Google Scholar
  46. 46.
    M. Wright, M. Manuel, T. Wallace, A. Newman, and K. Brinson, NASA Technical Reports Server-NTRS, 2015. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150005789.pdf.
  47. 47.
    N. Salowitz, A. Correa, and A.D. Moghadam, Paper presented at the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, 2017.Google Scholar
  48. 48.
    S. Hartshorn, Structural Adhesives, Chemistry and Technogy (Boston: Springer, 1986), pp. 347–406.CrossRefGoogle Scholar
  49. 49.
    N.F. Kazakov, Diffusion Bonding of Materials (New York: Pergamon Press, 1981), pp. 157–169.Google Scholar
  50. 50.
    D.J. Stephenson, Proceedings of the 2nd International Conference on Diffusion Bonding (London: Cranfield Institute of Technology, 1990).Google Scholar
  51. 51.
    S.R. White, N. Sottos, P. Geubelle, and J. Moore, Nature 409, 794 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Volkan Kilicli
    • 1
    • 2
  • Xiaojun Yan
    • 1
    • 3
  • Nathan Salowitz
    • 4
  • Pradeep K. Rohatgi
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of TechnologyGazi UniversityAnkaraTurkey
  3. 3.School of Mechanical EngineeringDalian UniversityDalianPeople’s Republic of China
  4. 4.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations