, Volume 69, Issue 3, pp 439–455 | Cite as

Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification

  • Mohsen SeifiEmail author
  • Michael Gorelik
  • Jess Waller
  • Nik Hrabe
  • Nima Shamsaei
  • Steve Daniewicz
  • John J. Lewandowski


As the metal additive manufacturing (AM) industry moves towards industrial production, the need for qualification standards covering all aspects of the technology becomes ever more prevalent. While some standards and specifications for documenting the various aspects of AM processes and materials exist and continue to evolve, many such standards still need to be matured or are under consideration/development within standards development organizations. An important subset of this evolving the standardization domain has to do with critical property measurements for AM materials. While such measurement procedures are well documented, with various legacy standards for conventional metallic material forms such as cast or wrought structural alloys, many fewer standards are currently available to enable systematic evaluation of those properties in AM-processed metallic materials. This is due in part to the current lack of AM-specific standards and specifications for AM materials and processes, which are a logical precursor to the material characterization standards for any material system. This paper summarizes some of the important standardization activities, as well as limitations associated with using currently available standards for metal AM with a focus on measuring mission-critical properties. Technical considerations in support of future standards development, as well as a pathway for qualification/certification of AM parts enabled by the appropriate standardization landscape, are discussed.


Fatigue Additive Manufacturing Integrate Computational Material Engineer Fatigue Crack Growth Test American Welding Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Ben Dutton of the Manufacturing Technology Centre, members of ISO Technical Committee 261 JG59, and Steve James of Aerojet Rocketdyne for their work on developing an AM defects catalog (Table I). The authors also wish to thank James McCabe of ANSI for his efforts to solicit inputs from AM, design, materials, NDT, and quality assurance experts to identify existing standards and standards in development, to assess current technology gaps related to standards, and to make recommendations for priority areas where there is a perceived need for additional standardization as described in Ref. 94.

Supplementary material

Supplementary Figure 1 (AVI 108395 kb)

Supplementary Figure 2 (AVI 227549 kb)


  1. 1.
    GE Additive (, (2016). Accessed 20 Dec 2016.
  2. 2.
    M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Gorelik, Int. J. Fatigue 94, 168 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, and J.J. Lewandowski, JOM 67, 597 (2015).CrossRefGoogle Scholar
  5. 5.
    J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016).CrossRefGoogle Scholar
  6. 6.
    N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).CrossRefGoogle Scholar
  7. 7.
    B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Mater. Des. 86, 545 (2015).Google Scholar
  9. 9.
    P. Li, D.H. Warner, A. Fatemi, and N. Phan, Int. J. Fatigue 85, 130 (2015).CrossRefGoogle Scholar
  10. 10.
    N. Hrabe, T. Gnaupel-Herold, and T. Quinn, Int. J. Fatigue 94, 202 (2016).CrossRefGoogle Scholar
  11. 11.
    G. Nicoletto, Int. J. Fatigue 94, 255 (2016).CrossRefGoogle Scholar
  12. 12.
    D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fatigue 94, 211 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Beretta and S. Romano, Int. J. Fatigue 94, 178 (2016).CrossRefGoogle Scholar
  14. 14.
    M. Gorelik, Y. Lenets, and M.N. Menon, in ASME Turbo Expo (ASME, New York, NY, 2005), GT2005-68770.Google Scholar
  15. 15.
    R. Corran, M. Gorelik, D. Lehmann, and S. Mosset, in ASME Turbo Expo (ASME, Barcelona, 2006), GT2006-90843.Google Scholar
  16. 16.
    U.S. Department of Transportation-Federal Aviation Administration Notice N 8900.391, Additive Manufacturing in Maintenance, Preventive Maintenance, and Alteration of Aircraft, Aircraft Engines, Propellers, and Appliances (Washington D.C., 2016).Google Scholar
  17. 17.
    D. Wells, Engineering and Quality Standard for Additively Manufactured Spaceflight Hardware (Marshall Space Flight Center, Huntsville, 2016).Google Scholar
  18. 18.
    Food and Drug Administration, Technical Considerations for Additive Manufactured Devices—Draft Guidance for Industry and Food and Drug Administration Staff (Silver Spring, 2016).Google Scholar
  19. 19.
    M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, and L. Ricles, 3D Print. Med. 2, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    Technology Exchange on Coordination of U.S. Standards Development for Additive Manufacturing (State College, PA, 2015).Google Scholar
  21. 21.
    B.A. Cowles, Summary Report: Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2016).Google Scholar
  22. 22.
    B.A. Cowles, Summary Report: The Second Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2017).Google Scholar
  23. 23.
    N. Hrabe, N. Barbosa, S.R. Daniewicz, and N. Shamsaei, Findings from the NIST/ASTM Workshop on Mechanical Behavior of Additive Manufacturing Components, in NIST Advanced Manufacturing Series, 2016.Google Scholar
  24. 24.
    T.M. Pollock, Nat. Mater. 15, 809 (2016).CrossRefGoogle Scholar
  25. 25.
    ASTM Standard F3122, in ASTM Book of Standards (ASTM International, West Conshohocken, 2014).Google Scholar
  26. 26.
    A.D. Peralta, M. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Integr. Mater. Manuf. Innov. 5, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
  28. 28.
    B. Dutta and F.H.S. Froes, Adv. Mater. Res. 1019, 19 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Draper, B. Lerch, J. Telesman, R. Martin, I. Locci, A. Garg, and A. Ring, NASA/TM2016-219136-Materials Characterization of Electron Beam Melted Ti-6Al-4V (NASA Glenn Research Center, Cleveland, OH, United States, 2016).Google Scholar
  30. 30.
    A.M. Beese and B.E. Carroll, JOM 68, 724 (2016).CrossRefGoogle Scholar
  31. 31.
    C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 1 (2015).CrossRefGoogle Scholar
  32. 32.
    A. Yadollahi and N. Shamsaei, Int. J. Fatigue 98, 14 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, and S. Sabbadini, J. ASTM Int. 9, 104293 (2012).CrossRefGoogle Scholar
  34. 34.
    E. Fodran and K. Walker, Benet Internal Technical Report: Surface Finish Enhancement for the Electron Beam Direct Digital Manufacturing of Ti-6Al-4V Alloy Structural Components (Watervliet, NY, 2015).Google Scholar
  35. 35.
    S.R. Daniewicz and N. Shamsaei, Int. J. Fatigue 94, 167 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, and P.T. Wang, Acta Mater. 58, 4029 (2010).CrossRefGoogle Scholar
  37. 37.
    B. Torries, A.J. Sterling, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, Rapid Prototyp. J. 22, 817 (2016).CrossRefGoogle Scholar
  38. 38.
    M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski, Int. J. Fatigue 94, 263 (2017).CrossRefGoogle Scholar
  39. 39.
    H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Addit. Manuf. 10, 47 (2016).CrossRefGoogle Scholar
  40. 40.
    P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 61016 (2013).CrossRefGoogle Scholar
  41. 41.
    D. Greitemeier, C. Dalle Donne, A. Schoberth, M. Jürgens, J. Eufinger, and T. Melz, Appl. Mech. Mater. 807, 169 (2015).CrossRefGoogle Scholar
  42. 42.
    H. Gong, K. Rafi, T. Starr, and B. Stucker, in Solid Freeform Fabrication Proceedings (Austin, TX, 2012), pp. 499–506.Google Scholar
  43. 43.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
  44. 44.
    A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, Eng. Fract. Mech. 120, 15 (2014).CrossRefGoogle Scholar
  45. 45.
    A.W. Prabhu, A. Chaudhary, W. Zhang, and S.S. Babu, Sci. Technol. Weld. Join. 20, 659 (2015).CrossRefGoogle Scholar
  46. 46.
    X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Mater. Sci. Eng. A 680, 239 (2017).CrossRefGoogle Scholar
  47. 47.
    P.A. Kobryn and S.L. Semiatin, in Solid Freeform Fabrication Proceedings (Austin, TX, 2001), pp. 179–186.Google Scholar
  48. 48.
    A. Yadollahi, N. Shamsaei, M.S. Thompson, A. Elwany, and L. Bian, Int. J. Fatigue 94, 218 (2016).CrossRefGoogle Scholar
  49. 49.
    P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).CrossRefGoogle Scholar
  50. 50.
    P. Edwards and M. Ramulu, Fatigue Fract. Eng. Mater. Struct. 38, 1228 (2015).CrossRefGoogle Scholar
  51. 51.
    N. Hrabe and T. Quinn, Mater. Sci. Eng. A 573, 271 (2013).CrossRefGoogle Scholar
  52. 52.
    R. Shrestha, N. Simsiriwong, N. Shamsaei, N. Thompson, and L. Bian, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), pp. 606–616.Google Scholar
  53. 53.
    S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther, Mater. Des. 83, 661 (2015).Google Scholar
  54. 54.
    H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, JOM 67, 555 (2015).CrossRefGoogle Scholar
  55. 55.
    M. Seifi, I. Ghamarian, P. Samimi, P.C. Collins, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1317–1322.Google Scholar
  56. 56.
    M. Seifi, A. Salem, D. Satko, U. Ackelid, S.L. Semiatin, and J.J. Lewandowski, Work in Progress (2017).Google Scholar
  57. 57.
    M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, and M. Takeyama, Addit. Manuf. 13, 61 (2017).CrossRefGoogle Scholar
  58. 58.
    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016).CrossRefGoogle Scholar
  59. 59.
    A. du Plessis, S.G. le Roux, J. Els, G. Booysen, and D.C. Blaine, Case Stud. Nondestruct. Test. Eval. 4, 1 (2015).CrossRefGoogle Scholar
  60. 60.
    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Scr. Mater. 122, 72 (2016).CrossRefGoogle Scholar
  61. 61.
    A.B. Spierings, T.L. Starr, and I. Ag, Rapid Prototyp. J. 19, 88 (2013).CrossRefGoogle Scholar
  62. 62.
    H.A. Stoffregen, K. Butterweck, and E. Abele, in Solid Freeform Fabrication Proceedings (Austin, TX, 2014), pp. 635–650.Google Scholar
  63. 63.
    E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Procedia 56, 371 (2014).CrossRefGoogle Scholar
  64. 64.
    D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz, Mater. Sci. Technol. 32(7), 629 (2015).CrossRefGoogle Scholar
  65. 65.
    M. Qian, W. Xu, M. Brandt, and H.P. Tang, MRS Bull. 41, 775 (2016).CrossRefGoogle Scholar
  66. 66.
    A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 644, 171 (2015).CrossRefGoogle Scholar
  67. 67.
    M. Mahmoudi, A. Elwany, A. Yadollahi, S. Thompson, L. Bian, and N. Shamsaei, Rapid Prototyp. J. Accepted (2017).Google Scholar
  68. 68.
    J.S. Keist and T.A. Palmer, Mater. Des. 106, 482 (2016).Google Scholar
  69. 69.
    B. Torries, S. Shao, N. Shamsaei, and S. Thompson, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), p. 1272.Google Scholar
  70. 70.
    J. Slotwinski and S. Moylan, Applicability of Existing Materials Testing Standards for Additive Manufacturing Materials, NIST IR 8005 (NIST, Gaithersburg, MD, 2014).Google Scholar
  71. 71.
    A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 655, 100 (2016).CrossRefGoogle Scholar
  72. 72.
    Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing. Workshop Summary Report (NIST, Gaithersburg, MD, 2013).Google Scholar
  73. 73.
    M.D. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Int. J. Adv. Manuf. Technol. 76, 1111 (2014).CrossRefGoogle Scholar
  74. 74.
    Y. Kok, X. Tan, S. Tor, and C.K. Chua, Virtual Phys. Prototyp. 10, 13 (2015).CrossRefGoogle Scholar
  75. 75.
    S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. StJohn, and M. Qian, Metall. Mater. Trans. A 46, 3824 (2015).CrossRefGoogle Scholar
  76. 76.
    ASTM/ISO JG61, Standard Guide for Orientation and Location Dependence Mechanical Properties for Metal Additive Manufacturing (ASTM International, West Conshohocken, PA, 2017). Work in Progress.Google Scholar
  77. 77.
    M. Seifi, D. Christiansen, J.L. Beuth, O. Harrysson, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1373–1377.Google Scholar
  78. 78.
    M. Seifi, H. Villarraga-Gómez, F. Kim, E.J. Garboczi, S. Moylan, and J.J. Lewandowski, Work in Progress (2017).Google Scholar
  79. 79.
    J.A. Slotwinski and E.J. Garboczi, JOM 67, 538 (2015).CrossRefGoogle Scholar
  80. 80.
    ASTM WK47031, Standard Guide for Post-Process Nondestructive Testing of Metal Additively Manufactured Parts Used in Aerospace Applications (West Conshohocken, PA, 2017). Work in Progress.Google Scholar
  81. 81.
    ASTM WK56649, Standard Practice/Guide for Intentionally Seeding Flaws in Additively Manufactured (AM) Parts (West Conshohocken, PA, 2017). Work in Progress.Google Scholar
  82. 82.
    R.B. Bergmann, F.T. Bessler, and W. Bauer, in Proceedings of ECNDT 2006 Conference (2006), pp. 1–10.Google Scholar
  83. 83.
    E. Maire and P.J. Withers, Int. Mater. Rev. 59, 1 (2013).CrossRefGoogle Scholar
  84. 84.
    A. Thompson, I. Maskery, and R.K. Leach, Meas. Sci. Technol. 27, 1 (2016).CrossRefGoogle Scholar
  85. 85.
    H. Villarraga-gómez, M. Seifi, Y. Uchiyama, A. Ramsey, and J.J. Lewandowski, in ASPE/euspen Summer Topical Meeting Dimensional Accuracy Surface Finish Additive Manufacturing (Raliegh, 2016), pp. 151–155.Google Scholar
  86. 86.
    K. Heim, F. Bernier, R. Pelletier, and L.P. Lefebvre, Case Stud. Nondestruct. Test. Eval. 6, 45 (2016).CrossRefGoogle Scholar
  87. 87.
    J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, J. Res. Natl. Inst. Stand. Technol. 119, 494 (2014).CrossRefGoogle Scholar
  88. 88.
    L. Koester, H. Taheri, L.J. Bond, D. Barnard, and J. Gray, in 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, vol. 1706 (2016), p. 130001.Google Scholar
  89. 89.
    Concept Laser’s QMmeltpool 3D: In-situ quality assurance with real-time monitoring down to the micron level, vol. 1, no. 2 (Innovar Communications Ltd, 2015), pp. 69–71.Google Scholar
  90. 90.
    E. Schwalbach, M. Groeber, R. Dehoff, V. Paquit, N. Schehl, W. Porter, W. Buchanan, and R. John, Multimodal Correlated Datasets to Understand Location Specific Processing State in Metals Additive Manufacturing (TMS (The Minerals, Metals & Materials Society)/Nashvile, TN, 2016).Google Scholar
  91. 91.
    O. Brunke, E. Neuser, and A. Suppes, Int. Symp. Digit. Ind. Radiol. Comput. Tomogr. 20, 1 (2011).Google Scholar
  92. 92.
    R. Cunningham, S.P. Narra, T. Ozturk, J. Beuth, and A.D. Rollett, JOM 68, 765 (2016).CrossRefGoogle Scholar
  93. 93.
    E. Neuser and A. Suppes, in International Symposium on Digital Industrial Radiology and Computed Tomography (Lyon, 2007).Google Scholar
  94. 94.
    America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), Public Draft (2017).Google Scholar
  95. 95.
    NASA-STD-5009, Nondestructive Evaluation Requirements For Fracture Critical Metallic Components, NASA Technical standards system (NASA Technical Standard, Washington, DC 20546, 2008).Google Scholar
  96. 96.
    J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, J.L. Walker, and E.R. Generazio, NASA Technical Memorandum- NASA/TM2014218560-Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report Prepared for (Hampton, 2014).Google Scholar
  97. 97.
    M. Schwalbe, ed., Predictive Theoretical and Computational Approaches for Additive Manufacturing: Proceedings of a Workshop (Washington, DC, 2016). doi: 10.17226/23646.
  98. 98.
    H.C. Ward and J.A. Warren, Materials Genome Initiative: Materials Data, NISTIR 8038 (Gaithersburg, MD, 2015).Google Scholar
  99. 99.
    D.L. McDowell and R.A. LeSar, MRS Bull. 41, 587 (2016).CrossRefGoogle Scholar
  100. 100.
    L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67(3), 629 (2015).CrossRefGoogle Scholar
  101. 101.
    ISO/ASTM 52900, in ASTM Book of Standard (ASTM International, West Conshohocken, 2015), pp. 1–9.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Federal Aviation AdministrationScottsdaleUSA
  3. 3.National Aeronautics and Space AgencyLas CrucesUSA
  4. 4.National Institute of Standards and TechnologyBoulderUSA
  5. 5.Department of Mechanical EngineeringAuburn UniversityAuburnUSA
  6. 6.Department of Mechanical EngineeringUniversity of AlabamaTuscaloosaUSA

Personalised recommendations