Advertisement

Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview

  • Leonardo FonsecaEmail author
  • Pablo Olmeda
  • Ricardo Novella
  • Ramon Molina Valle
Original Paper
  • 46 Downloads

Abstract

Internal combustion engines are now extremely optimized, in such ways improving their performance is a costly task. Traditional engine improvement by experimental means is aided by engine thermodynamic models, reducing experimental and total project costs. For those models, accuracy is mandatory in order to offer good prediction of engine performance. Modelling of the heat transfer and wall temperature is an important task concerning the accuracy and the predictions of any engine thermodynamic model, although it is many times an overcome task. In order to perform good prediction of engine heat transfer and wall temperature, models are required for accomplish heat transfer from hot gases to engine parts, heat transfer inside each engine part, and also heat transfer to coolant and lubricating oil. This paper presents an overview about engine heat transfer and wall temperature modelling, with main purpose to aid engine thermodynamic modelling and offer more accurate predictions of engine performance, consumption and emission parameters. The most important correlation are reviewed for three engine heat transfer approaches: gas to wall, wall to wall and wall to liquid heat transfer models. In order to obtain good prediction of wall temperature, those three approaches must be coupled, which may imply convection-conduction-convection problems, although for some applications in diesel engines, radiation problems must be considered.

Keywords

Internal combustion engine Engine wall temperature modeling Engine heat transfer modelling Engine thermodynamic modelling 

Notes

Acknowledgements

The author Leonardo Fonseca acknowledges CAPES (Coordination for the Improvement of Higher Education Personnel) for the scholarship from the program “CAPES - DEMANDA SOCIAL”, PhD level.

Funding

This study was partially funded by “CAPES - DEMANDA SOCIAL” Ph.D. level scholarship, from CAPES (Coordination for the Improvement of Higher Education Personnel).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Olmeda P, Martín J, Novella R, Carreño R (2015) An adapted heat transfer model for engines with tumble motion. Appl Energy 158:190–202.  https://doi.org/10.1016/j.apenergy.2015.08.051 CrossRefGoogle Scholar
  2. 2.
    Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst Sebastian (2016) Heat transfer in premixed spark ignition engines part i: identification of the factors influencing heat transfer. Energy 116:380–391.  https://doi.org/10.1016/j.energy.2016.08.065 CrossRefGoogle Scholar
  3. 3.
    Kosmadakis GM, Pariotis EG, Rakopoulos CD (2013) Heat transfer and crevice flow in a hydrogen-fueled spark-ignition engine: effect on the engine performance and no exhaust emissions. Int J Hydrog Energy 38(18):7477–7489.  https://doi.org/10.1016/j.ijhydene.2013.03.129 CrossRefGoogle Scholar
  4. 4.
    Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13(1):1–46.  https://doi.org/10.1016/0360-1285(87)90005-0 CrossRefGoogle Scholar
  5. 5.
    Yamakawa M, Youso T, Fujikawa T, Nishimoto T, Wada Y, Sato K, Yokohata H (2012) Combustion technology development for a high compression ratio SI engine. SAE Int J Fuels Lubr 5(1):98–105.  https://doi.org/10.4271/2011-01-1871 CrossRefGoogle Scholar
  6. 6.
    Deng B, Jianqin F, Zhang D, Yang J, Feng R, Liu J, Li K, Liu X (2013) The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy 60:230–241.  https://doi.org/10.1016/j.energy.2013.07.055 CrossRefGoogle Scholar
  7. 7.
    Šarić S, Basara B, Žunič Z (2017) Advanced near-wall modeling for engine heat transfer. Int J Heat Fluid Flow 63:205–211.  https://doi.org/10.1016/j.ijheatfluidflow.2016.06.019 CrossRefGoogle Scholar
  8. 8.
    Bohac SV, Baker DM, Assanis DN (1996) A global model for steady state and transient SI engine heat transfer studies. Technical report, SAE Technical Paper.  https://doi.org/10.4271/960073
  9. 9.
    Bürkle S, Biondo L, Ding C-P, Honza R, Ebert Volker, Böhm Benjamin, Wagner Steven (2018) In-cylinder temperature measurements in a motored ic engine using tdlas. Flow Turbul Combust 101(1):139–159.  https://doi.org/10.1007/s10494-017-9886-y CrossRefGoogle Scholar
  10. 10.
    Kosmadakis GM, Pariotis EG, Rakoupoulos CD (2012) Comparative analysis of three simulation models applied on a motored internal combustion engine. Energy Convers Manag 60:45–55.  https://doi.org/10.1016/j.enconman.2011.11.031 CrossRefGoogle Scholar
  11. 11.
    Bernard G, Lebas R, Demoulin F-X (2011) A 0d phenomenological model using detailed tabulated chemistry methods to predict diesel combustion heat release and pollutant emissions. Technical report, SAE Technical Paper.  https://doi.org/10.4271/2011-01-0847
  12. 12.
    Ge H-W, Shi Y, Reitz RD, Wickman DD, Willems Werner (2009) Optimization of a HSDI diesel engine for passenger cars using a multi-objective genetic algorithm and multi-dimensional modeling. SAE Int J Engines 2(1):691–713.  https://doi.org/10.4271/2009-01-0715 CrossRefGoogle Scholar
  13. 13.
    Vancoillie J, Sileghem L, Verhelst S (2014) Development and validation of a quasi-dimensional model for methanol and ethanol fueled si engines. Appl Energy 132:412–425.  https://doi.org/10.1016/j.apenergy.2014.07.046 CrossRefGoogle Scholar
  14. 14.
    Verhelst S, Sheppard CGW (2009) Multi-zone thermodynamic modelling of spark-ignition engine combustion-an overview. Energy Convers Manag 50(5):1326–1335.  https://doi.org/10.1016/j.enconman.2009.01.002 CrossRefGoogle Scholar
  15. 15.
    Zhang L (2018) Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Appl Thermal Eng 142:232–240.  https://doi.org/10.1016/j.applthermaleng.2018.06.084 CrossRefGoogle Scholar
  16. 16.
    Broatch A, Olmeda P, García A, Salvador-Iborra J, Warey A (2017) Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–1023.  https://doi.org/10.1016/j.energy.2016.11.040 CrossRefGoogle Scholar
  17. 17.
    Rashedul HK, Kalam MA, Masjuki HH, Ashraful AM, Imtenan S, Sajjad H, Wee LK (2014) Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol. Int Commun Heat Mass Transf 58:33–39.  https://doi.org/10.1016/j.icheatmasstransfer.2014.08.019 CrossRefGoogle Scholar
  18. 18.
    Benajes J, Olmeda P, Martín J, Blanco-Cavero D, Warey Alok (2017) Evaluation of swirl effect on the global energy balance of a HSDI diesel engine. Energy 122:168–181.  https://doi.org/10.1016/j.energy.2017.01.082 CrossRefGoogle Scholar
  19. 19.
    Weller HG, Uslu S, Gosman AD, Maly RR, Herweg R, Heel B (1994) Prediction of combustion in homogeneous-charge spark-ignition engines. Int Symp COMODIA 94:163–169Google Scholar
  20. 20.
    Heywood John B (1994) Combustion and its modeling in spark-ignition engines. In: International symposium COMODIA, vol 94, pp 1–15Google Scholar
  21. 21.
    Reuss DL, Kuo T-W, Khalighi B, Haworth D, Rosalik M (1995) Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations. Technical report, SAE Technical Paper.  https://doi.org/10.4271/952381
  22. 22.
    Wang Z, Shuai S-J, Wang J-X, Tian G-H (2006) A computational study of direct injection gasoline hcci engine with secondary injection. Fuel 85(12–13):1831–1841.  https://doi.org/10.1016/j.fuel.2006.02.013 CrossRefGoogle Scholar
  23. 23.
    Millo F, Luisi S, Borean F, Stroppiana A (2014) Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. Fuel 121:298–310.  https://doi.org/10.1016/j.fuel.2013.12.047 CrossRefGoogle Scholar
  24. 24.
    di Mare F, Knappstein R, Baumann M (2014) Application of les-quality criteria to internal combustion engine flows. Comput Fluids 89:200–213.  https://doi.org/10.1016/j.compfluid.2013.11.003 CrossRefzbMATHGoogle Scholar
  25. 25.
    Finol CA, Robinson K (2006) Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proc Inst Mech Eng Part D J Automob Eng 220(12):1765–1781.  https://doi.org/10.1243/09544070JAUTO202 CrossRefGoogle Scholar
  26. 26.
    Romero CA (2009) Contribución al conocimiento del comportamiento térmico y la gestión térmica de los motores de combustión interna alternativos. PhD thesis, Universitat Politècnica de València.  https://doi.org/10.4995/Thesis/10251/4923
  27. 27.
    Fan X, Che Z, Wang T, Zhen L (2018) Numerical investigation of boundary layer flow and wall heat transfer in a gasoline direct-injection engine. Int J Heat Mass Transf 120:1189–1199.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.089 CrossRefGoogle Scholar
  28. 28.
    Ngang EA, Abbe CVN (2018) Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Appl Therm Eng 136:462–474.  https://doi.org/10.1016/j.applthermaleng.2018.03.022 CrossRefGoogle Scholar
  29. 29.
    Soloiu V, Moncada JD, Gaubert R, Muiños M, Harp S, Ilie M, Zdanowicz A, Molina G (2018) LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtures. Renew Energy 123:323–333.  https://doi.org/10.1016/j.renene.2018.02.061 CrossRefGoogle Scholar
  30. 30.
    Renaud A, Ding C-P, Jakirlic S, Dreizler A, Böhm B (2018) Experimental characterization of the velocity boundary layer in a motored IC engine. Int J Heat Fluid Flow 71:366–377.  https://doi.org/10.1016/j.ijheatfluidflow.2018.04.014 CrossRefGoogle Scholar
  31. 31.
    Torregrosa AJ, Broatch A, Olmeda P, Salvador-Iborra J, Warey A (2017) Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. Energy Convers Manag 153:304–312.  https://doi.org/10.1016/j.enconman.2017.10.003 CrossRefGoogle Scholar
  32. 32.
    Ma PC, Ewan T, Jainski C, Lu L, Dreizler Andreas, Sick Volker, Ihme Matthias (2017) Development and analysis of wall models for internal combustion engine simulations using high-speed micro-piv measurements. Flow Turbul Combust 98(1):283–309.  https://doi.org/10.1007/s10494-016-9734-5 CrossRefGoogle Scholar
  33. 33.
    Cerdoun M, Carcasci C, Ghenaiet A (2016) An approach for the thermal analysis of internal combustion engines’ exhaust valves. Appl Ther Eng 102:1095–1108.  https://doi.org/10.1016/j.applthermaleng.2016.03.105 CrossRefGoogle Scholar
  34. 34.
    Shayler PJ, Colechin MJF, Scarisbrick A (1996) Heat transfer measurements in the intake port of a spark ignition engine. Technical report, SAE Technical Paper.  https://doi.org/10.4271/960273
  35. 35.
    Luján JM, Climent H, Olmeda P, Jiménez VD (2014) Heat transfer modeling in exhaust systems of high-performance two-stroke engines. Appl Therm Eng 69(1–2):96–104.  https://doi.org/10.1016/j.applthermaleng.2014.04.045 CrossRefGoogle Scholar
  36. 36.
    Michl J, Neumann J, Rottengruber H, Wensing M (2016) Derivation and validation of a heat transfer model in a hydrogen combustion engine. Appl Therm Eng 98:502–512.  https://doi.org/10.1016/j.applthermaleng.2015.12.062 CrossRefGoogle Scholar
  37. 37.
    Pischinger R, Klell M, Sams T (2009) Thermodynamik der Verbrennungskraftmaschine. Springer, Wien.  https://doi.org/10.1007/978-3-211-99277-7 CrossRefGoogle Scholar
  38. 38.
    Annand WJD (1963) Heat transfer in the cylinders of reciprocating internal combustion engines. Proc Inst Mech Eng 177(1):973–996.  https://doi.org/10.1243/PIME_PROC_1963_177_069_02 CrossRefGoogle Scholar
  39. 39.
    Woschni G (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. Technical report, SAE Technical paper.  https://doi.org/10.4271/670931
  40. 40.
    Han SB, Chung YJ, Kwon YJ, Lee S (1997) Empirical formula for instantaneous heat transfer coefficient in spark ignition engine. Technical report, SAE Technical Paper.  https://doi.org/10.4271/972995
  41. 41.
    De Cuyper T, Broekaert S, Chana K, De Paepe M, Verhelst S (2017) Evaluation of empirical heat transfer models using TFG heat flux sensors. Appl Therm Eng 118:561–569.  https://doi.org/10.1016/j.applthermaleng.2017.02.049 CrossRefGoogle Scholar
  42. 42.
    Irimescu A, Merola SS, Tornatore C, Valentino G (2015) Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine. Appl Energy 157:777–788.  https://doi.org/10.1016/j.apenergy.2015.02.050 CrossRefGoogle Scholar
  43. 43.
    Martins JJG, Finlay IC (1990) Heat transfer to air-ethanol and air-methanol sprays flowing in heated ducts and across heated intake valves. Technical report, SAE Technical Paper.  https://doi.org/10.4271/900583
  44. 44.
    Torregrosa AJ, Olmeda P, Degraeuwe B, Reyes M (2006) A concise wall temperature model for DI diesel engines. Appl Therm Eng 26(11–12):1320–1327.  https://doi.org/10.1016/j.applthermaleng.2005.10.021 CrossRefGoogle Scholar
  45. 45.
    Baker DM, Assanis DN (1994) A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Appl Math Modell 18:590–601.  https://doi.org/10.1016/0307-904X(94)90317-4 CrossRefzbMATHGoogle Scholar
  46. 46.
    Torregrosa AJ, Olmeda P, Martín J, Romero C (2011) A tool for predicting the thermal performance of a diesel engine. Heat Transf Eng 32(10):891–904.  https://doi.org/10.1080/01457632.2011.548639 CrossRefGoogle Scholar
  47. 47.
    Shayler PJ, Christian SJ, Ma T (1993) A model for the investigation of temperature, heat flow and friction characteristics during engine warm-up. Technical report, SAE Technical Paper.  https://doi.org/10.4271/931153
  48. 48.
    Jarrier L, Champoussin JC, Yu R, Gentile D (2000) Warm-up of a DI diesel engine: experiment and modeling. Technical report, SAE Technical Paper.  https://doi.org/10.4271/2000-01-0299
  49. 49.
    Jafari A, Hannani SK (2006) Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines. Int Commun Heat Mass Transf 33(1):122–134.  https://doi.org/10.1016/j.icheatmasstransfer.2005.08.008 CrossRefGoogle Scholar
  50. 50.
    Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2011) Methodology for the estimation of cylinder inner surface temperature in an air-cooled engine. Appl Therm Eng 31:1474–1481.  https://doi.org/10.1016/j.applthermaleng.2011.01.025 CrossRefGoogle Scholar
  51. 51.
    Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2012) Methodology for the estimation of head inner surface temperature in an air-cooled engine. Appl Therm Eng 35:202–211.  https://doi.org/10.1016/j.applthermaleng.2011.10.032 CrossRefGoogle Scholar
  52. 52.
    Cerit M, Coban M (2014) Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int J Therm Sci 77:11–18.  https://doi.org/10.1016/j.ijthermalsci.2013.10.009 CrossRefGoogle Scholar
  53. 53.
    Yaohui L, Zhang X, Xiang P, Dong D (2017) Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Appl Therm Eng 113:796–812.  https://doi.org/10.1016/j.applthermaleng.2016.11.070 CrossRefGoogle Scholar
  54. 54.
    Goudarzi K, Moosaei A, Gharaati M (2015) Applying artificial neural networks (ANN) to the estimation of thermal contact conductance in the exhaust valve of internal combustion engine. Appl Therm Eng 87:688–697.  https://doi.org/10.1016/j.applthermaleng.2015.05.060 CrossRefGoogle Scholar
  55. 55.
    Finlay IC, Harris D, Boam DJ, Parks BI (1985) Factors influencing combustion chamber wall temperatures in a liquid-cooled, automotive, spark-ignition engine. Proc Inst Mech Eng Part D Transp Eng 199(3):207–214.  https://doi.org/10.1243/PIME_PROC_1985_199_158_01 CrossRefGoogle Scholar
  56. 56.
    Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329.  https://doi.org/10.1021/i260019a023 CrossRefGoogle Scholar
  57. 57.
    Robinson K, Hawley JG, Hammond GP, Owen NJ (2003a) Convective coolant heat transfer in internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(2):133–146.  https://doi.org/10.1177/095440700321700207 CrossRefGoogle Scholar
  58. 58.
    Robinson K, Campbell NAF, Hawley JG, Tilley DG (1999) A review of precision engine cooling. Technical report, SAE Technical Paper.  https://doi.org/10.4271/1999-01-0578
  59. 59.
    Kandlikar SG (1998) Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. J Heat Transf 120(2):395–401.  https://doi.org/10.1115/1.2824263 CrossRefGoogle Scholar
  60. 60.
    Robinson K, Hawley JG, Campbell NAF (2003b) Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(10):877–889.  https://doi.org/10.1243/095440703769683289 CrossRefGoogle Scholar
  61. 61.
    Kandlikar SG, Bulut M (2003) An experimental investigation on flow boiling of ethylene-glycol/water mixtures. J Heat Transf 125(2):317–325.  https://doi.org/10.1115/1.1561816 CrossRefGoogle Scholar
  62. 62.
    Steiner H, Brenn G, Ramstorfer F, Breitschädel B (2011) Increased cooling power with nucleate boiling flow in automotive engine applications. In: Chiaberge M (ed) New trends and developments in automotive system engineering, chapter 13. IntechOpen, RijekaGoogle Scholar
  63. 63.
    Li Z, Huang RH, Wang ZW (2012) Subcooled boiling heat transfer modelling for internal combustion engine applications. Proc Inst Mech Eng Part D J Autom Eng 226(3):301–311.  https://doi.org/10.1177/0954407011417349 CrossRefGoogle Scholar
  64. 64.
    Torregrosa AJ, Broatch A, Olmeda P, Cornejo O (2014) Experiments on subcooled flow boiling in ic engine-like conditions at low flow velocities. Exp Therm Fluid Sci 52:347–354.  https://doi.org/10.1016/j.expthermflusci.2013.10.004 CrossRefGoogle Scholar
  65. 65.
    Mehdipour R, Baniamerian Z, Delauré Y (2016) Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines. Heat Mass Transf 52(5):957–968.  https://doi.org/10.1007/s00231-015-1611-6 CrossRefGoogle Scholar
  66. 66.
    Torregrosa AJ, Broatch A, Olmeda P, Martín J (2010) A contribution to film coefficient estimation in piston cooling galleries. Exp Therm Fluid Sci 34(2):142–151.  https://doi.org/10.1016/j.expthermflusci.2009.10.003 CrossRefGoogle Scholar
  67. 67.
    Liu YC, Guessous L, Sangeorzan BP, Alkidas AC (2014) Laboratory experiments on oil-jet cooling of internal combustion engine pistons: area-average correlation of oil-jet impingement heat transfer. J Energy Eng 141(2):C4014003.  https://doi.org/10.1061/(ASCE)EY.1943-7897.0000227 CrossRefGoogle Scholar
  68. 68.
    Peng W, Jizu L, Minli B, Yuyan W, Chengzhi Hu, Liang Zhang (2014) Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery. Numer Heat Transf Part A Appl 65(4):378–400.  https://doi.org/10.1080/10407782.2013.832071 CrossRefGoogle Scholar
  69. 69.
    Payri F, Olmeda P, Martín J, Carreño R (2014) A new tool to perform global energy balances in di diesel engines. SAE Int J Engines 7(1):43–59.  https://doi.org/10.4271/2014-01-0665 CrossRefGoogle Scholar
  70. 70.
    Kikusato A, Kusaka J, Daisho Y (2015) A numerical study on predicting combustion chamber wall surface temperature distributions in a diesel engine and their effects on combustion, emission and heat loss characteristics by using a 3d-cfd code combined with a detailed heat transfer model. Technical report, SAE Technical Paper.  https://doi.org/10.4271/2015-01-1847
  71. 71.
    Martín J, Novella R, García A, Carreño R, Heuser Benedikt, Kremer Florian, Pischinger Stefan (2016) Thermal analysis of a light-duty ci engine operating with diesel-gasoline dual-fuel combustion mode. Energy 115:1305–1319.  https://doi.org/10.1016/j.energy.2016.09.021 CrossRefGoogle Scholar
  72. 72.
    Broatch A, Olmeda P, Margot X, Escalona J (2019) New approach to study the heat transfer in internal combustion engines by 3d modelling. In J Therm Sci 138:405–415.  https://doi.org/10.1016/j.ijthermalsci.2019.01.006 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  1. 1.PPGMEC/UFMG - Mechanical Engineering Post Graduation Program - Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.CMT Motores Termicos, Universitat Politècnica de ValènciaValenciaSpain
  3. 3.DETEM/UFSJ - Telecommunications and Mechatronic Engineering Department - Federal University of São João del-ReiOuro BrancoBrazil

Personalised recommendations