Advertisement

Basis of the Lattice Boltzmann Method for Additive Manufacturing

  • Alberto CattenoneEmail author
  • Simone Morganti
  • Ferdinando Auricchio
Original Paper

Abstract

Additive manufacturing (or 3D printing) is constantly growing as an innovative process for the production of complex-shape components. Among the seven recognized 3D printing technologies, powder bed fusion (PBF) covers a very important role for the production of structurally functional components starting from different metal powder. However, being PBF a production process involving very high thermal gradients, non-negligible deformations and residual stresses may affect the 3D printed component. One of the characterizing aspects of PBF is the evolution of the melt pool and the heat exchange with the surrounding solid powder. In literature many attempts to simulate melt pool evolution have been carried out, however the only approaches leading to interesting results rely on the lattice Boltzmann method. In this work, starting from the Boltzmann’s equation, we derive the lattice Boltzmann equation and we introduce the needed assumptions in order to recover the lattice Boltzmann method. Finally, we apply the lattice Boltzmann method to study some interesting problems related to powder bed fusion process, including droplets wetting, thermal convection and solid–liquid phase change.

Notes

Acknowledgements

This work was supported by European Union, Repubblica Italiana, Regione Lombardia and FESR for the project MADE4LO under the call “POR FESR 2014-2020 ASSE I - AZIONE I.1.B.1.3

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alexiades V (1992) Mathematical modeling of melting and freezing processes. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67(2):318–330MathSciNetzbMATHGoogle Scholar
  3. 3.
    ASTM International (2012) ASTM: standard terminology for additive manufacturing technologies. ASTM International, West ConshohockenGoogle Scholar
  4. 4.
    Attar E, Körner C (2011) Lattice Boltzmann model for thermal free surface flows with liquid solid phase transition. Int J Heat Fluid Flow 32(1):156–163Google Scholar
  5. 5.
    Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modeling of a two phase flow in the presence of boundaries: the contact angle. Phys Rev 74(2):021509MathSciNetzbMATHGoogle Scholar
  6. 6.
    Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246Google Scholar
  7. 7.
    Boussinesq J (1903) Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol 2. Gauthier-Villars, PariszbMATHGoogle Scholar
  8. 8.
    Burggraf O (1966) Analytical and numerical studies of the structure of steady separated flows. J Fluid Mech 24(1):113–151Google Scholar
  9. 9.
    Carnahan N, Starling K (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51(2):635–636Google Scholar
  10. 10.
    Cercignani C (1988) The Boltzmann equation. Springer, BerlinzbMATHGoogle Scholar
  11. 11.
    Chakraborty S, Chatterjee D (2007) An enthalpy based hybrid Lattice Boltzmann method for modelling solid liquid phase transition in the presence of convective transport. J Fluid Mech 592:155–175zbMATHGoogle Scholar
  12. 12.
    Chatterjee D (2009) An enthalpy based thermal lattice Boltzmann model for non isothermal systems. Europhys Lett 86(1):14004Google Scholar
  13. 13.
    Chatterjee D, Chakraborty S (2005) An enthalpy based lattice Boltzmann model for diffusion dominated solid liquid phase transformation. Phys Lett 341(1–4):320–330zbMATHGoogle Scholar
  14. 14.
    Clever R, Busse F (1974) Transition to time-dependent convection. J Fluid Mech 65(4):625–645zbMATHGoogle Scholar
  15. 15.
    Coopers P (2014) 3D printing and the new shape of industrial manufacturingGoogle Scholar
  16. 16.
    D’Humières D (2002) Multiple relaxation time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond A Math Phys Eng Sci 360(1792):437–451MathSciNetzbMATHGoogle Scholar
  17. 17.
    Eshraghi M, Felicelli S (2012) An implicit lattice Boltzmann model for heat conduction with phase change. Int J Heat Mass Transf 55(9–10):2420–2428Google Scholar
  18. 18.
    Frisch U, D’Humieres D, Hasslacher B, Lallemand P, Pomeau Y, Rivet JP (1986) Lattice gas hydrodynamics in two and three dimensions. Technical report, Los Alamos National Lab., NM (USA); Observatoire de Nice, 06 (France); Ecole Normale Superieure, 75-Paris (France)Google Scholar
  19. 19.
    Fyta M, Melchionna S, Kaxiras E, Succi S (2006) Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Multiscale Model Simul 5(4):1156–1173MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ganeriwala R, Zohdi T (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter 18(2):21Google Scholar
  21. 21.
    Geller S, Krafczyk M, Tölke J, Turek S, Hron J (2006) Benchmark computations based on lattice Boltzmann, finite element and finite volume methods for laminar flows. Comput Fluids 35(8–9):888–897zbMATHGoogle Scholar
  22. 22.
    Ghia U, Ghia K, Shin C (1982) High Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411zbMATHGoogle Scholar
  23. 23.
    Gong S, Cheng P (2012) A lattice Boltzmann method for simulation of liquid vapor phase change heat transfer. Int J Heat Mass Transf 55(17–18):4923–4927Google Scholar
  24. 24.
    Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39(4):325–342MathSciNetzbMATHGoogle Scholar
  25. 25.
    Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering, vol 3. World Scientific, SingaporezbMATHGoogle Scholar
  26. 26.
    Guo Z, Zhao T (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev 66(3):036304Google Scholar
  27. 27.
    Hardy J, Pazzis OD, Pomeau Y (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev 13(5):1949Google Scholar
  28. 28.
    He X, Chen S, Doolen G (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300MathSciNetzbMATHGoogle Scholar
  29. 29.
    He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107(1–2):309–328zbMATHGoogle Scholar
  30. 30.
    He X, Luo L (1997) Theory of the lattice boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev 56(6):6811Google Scholar
  31. 31.
    Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125Google Scholar
  32. 32.
    Higuera F, Succi S, Benzi R (1989) Lattice gas dynamics with enhanced collisions. Europhys Lett 9(4):345Google Scholar
  33. 33.
    Huang H, Li Z, Liu S, Lu X (2009) Shan-and-Chen type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int J Numer Methods Fluids 61(3):341–354MathSciNetzbMATHGoogle Scholar
  34. 34.
    Huang R, Wu H, Cheng P (2013) A new lattice Boltzmann model for solid liquid phase change. Int J Heat Mass Transf 59:295–301Google Scholar
  35. 35.
    Kao P, Yang R (2007) Simulating oscillatory flows in Rayleigh Benard convection using the lattice Boltzmann method. Int J Heat Mass Transf 50(17–18):3315–3328zbMATHGoogle Scholar
  36. 36.
    Klassen A, Bauereiß A, Körner C (2014) Modelling of electron beam absorption in complex geometries. J Phys 47(6):065307Google Scholar
  37. 37.
    Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys 47(27):275303Google Scholar
  38. 38.
    Körner C (2008) Lattice Boltzmann model for free surface flow. In: Integral foam molding of light metals. Springer, pp 163–170Google Scholar
  39. 39.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987Google Scholar
  40. 40.
    Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121(1–2):179–196MathSciNetzbMATHGoogle Scholar
  41. 41.
    Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen E (2017) The lattice Boltzmann method. Springer, BerlinzbMATHGoogle Scholar
  42. 42.
    Kruth JP, Mercelis P, Vaerenbergh JV, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36Google Scholar
  43. 43.
    Ladd A, Verberg R (2001) Lattice Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251MathSciNetzbMATHGoogle Scholar
  44. 44.
    Landau L, Lifschitz E (1987) Fluid mechanics. Pergamon Press, OxfordGoogle Scholar
  45. 45.
    Latt J (2008) Choice of units in lattice Boltzmann simulations. http://lbmethod.org/_media/howtos:lbunits.pdf. Accessed 15 Jan 2019
  46. 46.
    Liu C, Lin K, Mai C, Lin C (2010) Thermal boundary conditions for thermal lattice Boltzmann simulations. Comput Math Appl 59(7):2178–2193MathSciNetzbMATHGoogle Scholar
  47. 47.
    Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328Google Scholar
  48. 48.
    Lu L, Sridhar N, Zhang Y (2018) Phase field simulation of powder bed-based additive manufacturing. Acta Mater 144:801–809Google Scholar
  49. 49.
    Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261:74–85Google Scholar
  50. 50.
    Markl M (2015) Numerical modeling and simulation of selective electron beam melting using a coupled lattice Boltzmann and discrete element methodGoogle Scholar
  51. 51.
    Markl M, Korner C (2016) Multiscale modeling of powder bed based additive manufacturing. Annu Rev Mater Res 46:93–123Google Scholar
  52. 52.
    McNamara G, Garcia A, Alder B (1995) Stabilization of thermal lattice Boltzmann models. J Stat Phys 81(1–2):395–408zbMATHGoogle Scholar
  53. 53.
    McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61(20):2332Google Scholar
  54. 54.
    Meakin P, Jullien R (1987) Restructuring effects in the rain model for random deposition. J Phys 48(10):1651–1662Google Scholar
  55. 55.
    Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265Google Scholar
  56. 56.
    Miller W, Succi S (2002) A lattice Boltzmann model for anisotropic crystal growth from melt. J Stat Phys 107(1–2):173–186zbMATHGoogle Scholar
  57. 57.
    Mohamad A (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer, BerlinzbMATHGoogle Scholar
  58. 58.
    Noble D, Torczynski J (1998) A lattice Boltzmann method for partially saturated computational cells. Int J Mod Phys 9(08):1189–1201Google Scholar
  59. 59.
    Palmer B, Rector D (2000) Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J Comput Phys 161(1):1–20MathSciNetzbMATHGoogle Scholar
  60. 60.
    Qian Y, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17(6):479zbMATHGoogle Scholar
  61. 61.
    Rai A, Markl M, Körner C (2016) A coupled cellular automaton-lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 124:37–48Google Scholar
  62. 62.
    Raiskinmäki P, Koponen A, Merikoski J, Timonen J (2000) Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comput Mater Sci 18(1):7–12Google Scholar
  63. 63.
    Rauniyar S, Chou K (2019) Melt pool analysis and mesoscale simulation of laser powder bed fusion process (L-PBF) with Ti–6Al–4V powder particles. JOM 71(3):938–945Google Scholar
  64. 64.
    Rausch A, Küng V, Pobel C, Markl M, Körner C (2017) Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density. Materials 10(10):1117Google Scholar
  65. 65.
    Redlich O, Kwong J (1949) On the thermodynamics of solutions. An equation of state. Fugacities of gaseous solutions. Chem Rev 44(1):233–244Google Scholar
  66. 66.
    Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetGoogle Scholar
  67. 67.
    Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev 47(3):1815Google Scholar
  68. 68.
    Shan X, Chen H (1994) Simulation of non ideal gases and liquid gas phase transitions by the lattice Boltzmann equation. Phys Rev 49(4):2941Google Scholar
  69. 69.
    Strack O, Cook B (2007) Three dimensional immersed boundary conditions for moving solids in the lattice Boltzmann method. J Numer Methods Fluids 55(2):103–125zbMATHGoogle Scholar
  70. 70.
    Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, OxfordzbMATHGoogle Scholar
  71. 71.
    Sukop MC, Thorne Jr DT (2006) Lattice Boltzmann modeling. Springer, HeidelbergGoogle Scholar
  72. 72.
    Tang G, Tao W, He Y (2005) Thermal boundary condition for the thermal lattice Boltzmann equation. Phys Rev 72(1):016703Google Scholar
  73. 73.
    Teixeira C, Chen H, Freed D (2000) Multi speed thermal lattice Boltzmann method stabilization via equilibrium under relaxation. Comput Phys Commun 129(1–3):207–226zbMATHGoogle Scholar
  74. 74.
    Thies M (2005) Lattice Boltzmann modeling with free surfaces applied to in-situ gas generated foam formation. Ph.D. thesis, University of Erlangen-NörnbergGoogle Scholar
  75. 75.
    Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of TI6Al4V. Acta Mater 58(9):3303–3312Google Scholar
  76. 76.
    Thürey N, Körner C, Rüde U (2005) Interactive free surface fluids with the lattice Boltzmann method. Technical reportGoogle Scholar
  77. 77.
    Van der Waals JD (1873) Over de Continuiteit van den Gas en Vloeistoftoestand, vol 1. Sijthoff, LeidenzbMATHGoogle Scholar
  78. 78.
    Wang X, Kruth J(2000) Energy absorption and penetration in selective laser sintering: a ray tracing model. In: Proceedings of the international conference on mathematical modeling and computer simulation of metal technologies, pp 673–682Google Scholar
  79. 79.
    Wolf-Gladrow D (2004) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, BerlinzbMATHGoogle Scholar
  80. 80.
    Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631Google Scholar
  81. 81.
    Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367Google Scholar
  82. 82.
    Yuan P, Gu D (2015) Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D Appl Phys 48(3):035303MathSciNetGoogle Scholar
  83. 83.
    Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. PF 18(4):042101MathSciNetzbMATHGoogle Scholar
  84. 84.
    Zäh M, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4(1):15–23Google Scholar
  85. 85.
    Zhao-Li G, Chu-Guang Z, Bao-Chang S (2002) Non equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin Phys 11(4):366Google Scholar
  86. 86.
    Zheng H, Shu C, Chew Y (2006) A lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys 218(1):353–371MathSciNetzbMATHGoogle Scholar
  87. 87.
    Zhou J (2004) Lattice Boltzmann methods for shallow water flows, vol 4. Springer, BerlinzbMATHGoogle Scholar
  88. 88.
    Zohdi T (2014) Additive particle deposition and selective laser processing a computational manufacturing framework. Comput Mech 54(1):171–191MathSciNetGoogle Scholar
  89. 89.
    Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9(6):1591–1598MathSciNetzbMATHGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering and ArchitectureUniversity of PaviaPaviaItaly
  2. 2.Department of Electrical, Computer, and Biomedical EngineeringUniversity of PaviaPaviaItaly

Personalised recommendations