Advertisement

Meshless Methods for the Simulation of Machining and Micro-machining: A Review

  • Angelos P. MarkopoulosEmail author
  • Nikolaos E. Karkalos
  • Emmanouil-Lazaros Papazoglou
Original Paper
  • 13 Downloads

Abstract

Modeling of manufacturing processes and especially machining has proven to be particularly demanding, due to the complex phenomena occurring, leading to the necessity of employing special material and contact models, developing the appropriate thermo-mechanical coupling, and determining the chip forming mechanism and final morphology. Finite element method (FEM) models are proven to be adequate for metal cutting simulations up to some extent but still exhibit several shortcomings. During the past few years, a shift towards meshless methods was noticed, in order to avoid the deficiencies of FEM models. In the present work, a thorough review of the most important meshless methods employed for the modeling of machining processes is presented. After a concise description of each method, further discussions are conducted with a view to illustrate the strengths and weaknesses of each method, highlight its capabilities towards more reliable simulations, as well as propose potential future applications.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Monaghan JJ, Gingold RA (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 1:1.  https://doi.org/10.1093/mnras/181.3.375 zbMATHCrossRefGoogle Scholar
  2. 2.
    Limido J, Espinosa C, Salaun M, Lacome JL (2006) A new approach of high speed cutting modelling: SPH method. J Phys IV 134:1195–1200.  https://doi.org/10.1051/jp4:2006134182 CrossRefGoogle Scholar
  3. 3.
    Cleary PW (2010) Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Appl Math Model 34:3189–3201.  https://doi.org/10.1016/j.apm.2010.02.012 zbMATHCrossRefGoogle Scholar
  4. 4.
    Liu GG-R, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing, SingaporezbMATHCrossRefGoogle Scholar
  5. 5.
    Alshaer AW, Rogers BD, Li L (2017) Smoothed particle hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Comput Mater Sci 127:161–179.  https://doi.org/10.1016/j.commatsci.2016.09.004 CrossRefGoogle Scholar
  6. 6.
    Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177:41–48.  https://doi.org/10.1016/j.jmatprotec.2006.03.237 CrossRefGoogle Scholar
  7. 7.
    Ma L, Bao R, Guo Y (2008) Waterjet penetration simulation by hybrid code of SPH and FEA. Int J Impact Eng 35:1035–1042.  https://doi.org/10.1016/j.ijimpeng.2007.05.007 CrossRefGoogle Scholar
  8. 8.
    Calamaz M, Limido J, Nouari M et al (2009) Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials. Int J Refract Met Hard Mater 27:595–604.  https://doi.org/10.1016/j.ijrmhm.2008.09.005 CrossRefGoogle Scholar
  9. 9.
    Zahedi A, Li S, Roy A et al (2012) Application of smooth-particle hydrodynamics in metal machining. J Phys Conf Ser.  https://doi.org/10.1088/1742-6596/382/1/012017 CrossRefGoogle Scholar
  10. 10.
    Zahedi SA, Roy A, Silberschmidt VV (2013) Modeling of micro-machining single-crystal f.c.c. metals. Procedia CIRP 8:346–350.  https://doi.org/10.1016/j.procir.2013.06.114 CrossRefGoogle Scholar
  11. 11.
    Abolfazl Zahedi S, Demiral M, Roy A, Silberschmidt VV (2013) FE/SPH modelling of orthogonal micro-machining of f.c.c. single crystal. Comput Mater Sci 78:104–109.  https://doi.org/10.1016/j.commatsci.2013.05.022 CrossRefGoogle Scholar
  12. 12.
    Zahedi SA, Roy A, Silberschmidt VV (2015) Modelling of vibration assisted machining f.c.c single crystal. Procedia CIRP 31:393–398.  https://doi.org/10.1016/j.procir.2015.03.029 CrossRefGoogle Scholar
  13. 13.
    Islam S, Ibrahim R, Das R, Fagan T (2012) Novel approach for modelling of nanomachining using a mesh-less method. Appl Math Model 36:5589–5602.  https://doi.org/10.1016/j.apm.2012.01.005 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Spreng F, Eberhard P, Fleissner F (2013) An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms. Theor Appl Mech Lett.  https://doi.org/10.1063/2.1301305 CrossRefGoogle Scholar
  15. 15.
    Zhao H, Liu C, Cui T et al (2013) Influences of sequential cuts on micro-cutting process studied by smooth particle hydrodynamic (SPH). Appl Surf Sci 284:366–371.  https://doi.org/10.1016/j.apsusc.2013.07.106 CrossRefGoogle Scholar
  16. 16.
    Madaj M, Píška M (2013) On the SPH orthogonal cutting simulation of A2024-T351 alloy. Procedia CIRP 8:152–157.  https://doi.org/10.1016/j.procir.2013.06.081 CrossRefGoogle Scholar
  17. 17.
    Rüttimann N, Roethlin M, Buhl S, Wegener K (2013) Simulation of hexa-octahedral diamond grain cutting tests using the SPH method. Procedia CIRP 8:322–327.  https://doi.org/10.1016/j.procir.2013.06.110 CrossRefGoogle Scholar
  18. 18.
    Xi Y, Bermingham M, Wang G, Dargusch M (2014) SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput Mater Sci 84:188–197.  https://doi.org/10.1016/j.commatsci.2013.12.018 CrossRefGoogle Scholar
  19. 19.
    Spreng F, Eberhard P (2015) Machining process simulations with smoothed particle hydrodynamics. Procedia CIRP 31:94–99.  https://doi.org/10.1016/j.procir.2015.03.073 CrossRefGoogle Scholar
  20. 20.
    Balbaa MA, Nasr MNA (2015) Prediction of residual stresses after laser-assisted machining of inconel 718 using SPH. Procedia CIRP 31:19–23.  https://doi.org/10.1016/j.procir.2015.03.034 CrossRefGoogle Scholar
  21. 21.
    Dong XW, Liu GR, Li Z, Zeng W (2016) A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. Tribol Int 95:267–278.  https://doi.org/10.1016/j.triboint.2015.11.038 CrossRefGoogle Scholar
  22. 22.
    Bao J, Long Y, Tong Y et al (2016) Experiment and simulation study of laser dicing silicon with water-jet. Appl Surf Sci 387:491–496.  https://doi.org/10.1016/j.apsusc.2016.06.135 CrossRefGoogle Scholar
  23. 23.
    Shchurov IA, Nikonov AV, Boldyrev IS (2016) SPH-simulation of the fiber-reinforced composite workpiece cutting for the surface quality improvement. Procedia Eng 150:860–865.  https://doi.org/10.1016/j.proeng.2016.07.029 CrossRefGoogle Scholar
  24. 24.
    Nassiri A, Kinsey B (2016) Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). J Manuf Process 24:376–381.  https://doi.org/10.1016/j.jmapro.2016.06.017 CrossRefGoogle Scholar
  25. 25.
    Gyliene V, Eidukynas V (2016) The numerical analysis of cutting forces in high feed face milling, assuming the milling tool geometry. Procedia CIRP 46:436–439.  https://doi.org/10.1016/j.procir.2016.03.132 CrossRefGoogle Scholar
  26. 26.
    Duan N, Yu Y, Wang W, Xu X (2017) Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the FEM and SPH. Int J Mach Tools Manuf 120:49–60.  https://doi.org/10.1016/j.ijmachtools.2017.04.012 CrossRefGoogle Scholar
  27. 27.
    Duan N, Yu Y, Wang W, Xu X (2017) SPH and FE coupled 3D simulation of monocrystal SiC scratching by single diamond grit. Int J Refract Met Hard Mater 64:279–293.  https://doi.org/10.1016/j.ijrmhm.2016.09.016 CrossRefGoogle Scholar
  28. 28.
    Ghafarizadeh S, Tahvilian AM, Chatelain JF et al (2017) Numerical simulation of ball-end milling with SPH method. Int J Adv Manuf Technol 88:401–408.  https://doi.org/10.1007/s00170-016-8811-1 CrossRefGoogle Scholar
  29. 29.
    Takabi B, Tajdari M, Tai BL (2017) Numerical study of smoothed particle hydrodynamics method in orthogonal cutting simulations—effects of damage criteria and particle density. J Manuf Process 30:523–531.  https://doi.org/10.1016/j.jmapro.2017.10.020 CrossRefGoogle Scholar
  30. 30.
    Stenberg N, Delić A, Björk T (2017) Using the SPH method to easier predict wear in machining. Procedia CIRP 58:317–322.  https://doi.org/10.1016/j.procir.2017.03.234 CrossRefGoogle Scholar
  31. 31.
    Schnabel D, Özkaya E, Biermann D, Eberhard P (2018) Modeling the motion of the cooling lubricant in drilling processes using the finite volume and the smoothed particle hydrodynamics methods. Comput Methods Appl Mech Eng 329:369–395.  https://doi.org/10.1016/j.cma.2017.09.015 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu Y, Li B, Wu C et al (2018) Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram Int.  https://doi.org/10.1016/j.ceramint.2018.03.278 CrossRefGoogle Scholar
  33. 33.
    Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Meth Eng 61:964–989.  https://doi.org/10.1002/nme.1096 MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Rodríguez JM, Jonsén P, Svoboda A (2017) Dislocation density based material model applied in PFEM-simulation of metal cutting. Procedia CIRP 58:193–197.  https://doi.org/10.1016/j.procir.2017.03.338 CrossRefGoogle Scholar
  35. 35.
    Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method—an overview. Int J Comput Methods 01:267–307.  https://doi.org/10.1142/S0219876204000204 zbMATHCrossRefGoogle Scholar
  36. 36.
    Oliver J, Cante JC, Gonzalez C (2005) On particle finite element methods in solid mechanics problems. Computational plasticity fundamental application—proceedings of the 8th international conference on the computer plasticity COMPLAS VIII, pp 1–4Google Scholar
  37. 37.
    Uhlmann E, Gerstenberger R, Kuhnert J (2013) Cutting simulation with the meshfree finite pointset method. Procedia CIRP 8:391–396.  https://doi.org/10.1016/j.procir.2013.06.122 CrossRefGoogle Scholar
  38. 38.
    Rodríguez J, Arrazola P, Cante J et al (2013) A sensibility analysis to geometric and cutting conditions using the particle finite element method (PFEM). Procedia CIRP 8:105–110.  https://doi.org/10.1016/j.procir.2013.06.073 CrossRefGoogle Scholar
  39. 39.
    Sabel M, Sator C, Müller R (2014) A particle finite element method for machining simulations. Comput Mech 54:123–131.  https://doi.org/10.1007/s00466-014-1025-1 zbMATHCrossRefGoogle Scholar
  40. 40.
    Sabel M, Sator C, Müller R (2016) Particle finite element analysis of cutting processes in manufacturing. Proc Appl Math Mech 14:231–232.  https://doi.org/10.1002/pamm.201610104 CrossRefGoogle Scholar
  41. 41.
    Ryzhakov PB, García J, Oñate E (2016) Lagrangian finite element model for the 3D simulation of glass forming processes. Comput Struct 177:126–140.  https://doi.org/10.1016/j.compstruc.2016.09.007 CrossRefGoogle Scholar
  42. 42.
    Wawreńczuk A, Kuhnert J, Siedow N (2007) FPM computations of glass cooling with radiation. Comput Methods Appl Mech Eng 196:4656–4671.  https://doi.org/10.1016/j.cma.2007.05.025 zbMATHCrossRefGoogle Scholar
  43. 43.
    Rodríguez JM, Jonsén P, Svoboda A (2016) On the numerical modelling of forming processes using the particle finite element method. In: 29th Nordic seminar on computational mechanics, pp 2–5Google Scholar
  44. 44.
    Rodríguez JM, Jonsén P, Svoboda A (2017) Simulation of metal cutting using the particle finite-element method and a physically based plasticity model. Comput Part Mech 4:35–51.  https://doi.org/10.1007/s40571-016-0120-9 CrossRefGoogle Scholar
  45. 45.
    Rodríguez JM, Carbonell JM, Cante JC, Oliver J (2017) Continuous chip formation in metal cutting processes using the particle finite element method (PFEM). Int J Solids Struct 120:81–102.  https://doi.org/10.1016/j.ijsolstr.2017.04.030 CrossRefGoogle Scholar
  46. 46.
    McNamara S, Young WR (1994) Inelastic collapse in two dimensions. Phys Rev E 50:28–31CrossRefGoogle Scholar
  47. 47.
    Bićanić N (2007) Discrete element methods. In: Erwin S, de Borst R, Hughe TJR (eds) Encyclopedia of computational mechanics. Wiley, New YorkGoogle Scholar
  48. 48.
    Tan Y, Yang D, Sheng Y (2008) Study of polycrystalline Al2O3 machining cracks using discrete element method. Int J Mach Tools Manuf 48:975–982.  https://doi.org/10.1016/j.ijmachtools.2008.01.010 CrossRefGoogle Scholar
  49. 49.
    Tan Y, Yang D, Sheng Y (2009) Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J Eur Ceram Soc 29:1029–1037.  https://doi.org/10.1016/j.jeurceramsoc.2008.07.060 CrossRefGoogle Scholar
  50. 50.
    Iliescu D, Gehin D, Iordanoff I et al (2010) A discrete element method for the simulation of CFRP cutting. Compos Sci Technol 70:73–80.  https://doi.org/10.1016/j.compscitech.2009.09.007 CrossRefGoogle Scholar
  51. 51.
    Eberhard P, Gaugele T (2013) Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput Mech 51:261–278.  https://doi.org/10.1007/s00466-012-0720-z zbMATHCrossRefGoogle Scholar
  52. 52.
    Qiu Y, Gu M, Wei Z (2015) Machining mechanism research of glass by discrete element method. J Mech Sci Technol 29:1283–1288.  https://doi.org/10.1007/s12206-015-0243-6 CrossRefGoogle Scholar
  53. 53.
    Pfeiffer R, Lorong P, Ranc N (2015) Simulation of green wood milling with discrete element method. In: 22nd international wood machining seminarGoogle Scholar
  54. 54.
    Steuben JC, Iliopoulos AP, Michopoulos JG (2016) Discrete element modeling of particle-based additive manufacturing processes. Comput Methods Appl Mech Eng 305:537–561.  https://doi.org/10.1016/j.cma.2016.02.023 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Osa JL, Sánchez JA, Ortega N et al (2016) Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models. Int J Mach Tools Manuf 110:43–54.  https://doi.org/10.1016/j.ijmachtools.2016.07.004 CrossRefGoogle Scholar
  56. 56.
    Chen H, Wei Q, Wen S et al (2017) Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf 123:146–159.  https://doi.org/10.1016/j.ijmachtools.2017.08.004 CrossRefGoogle Scholar
  57. 57.
    Lee WH, Zhang Y, Zhang J (2017) Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol 315:300–308.  https://doi.org/10.1016/j.powtec.2017.04.002 CrossRefGoogle Scholar
  58. 58.
    Kang YS, Hashimoto F, Johnson SP, Rhodes JP (2017) Discrete element modeling of 3D media motion in vibratory finishing process. CIRP Ann Manuf Technol 66:313–316.  https://doi.org/10.1016/j.cirp.2017.04.092 CrossRefGoogle Scholar
  59. 59.
    He Y, Zhang J, Qi Y et al (2017) Numerical study of microstructural effects on chip formation in high speed cutting of ductile iron with discrete element method. J Mater Process Technol 249:291–301.  https://doi.org/10.1016/j.jmatprotec.2017.06.006 CrossRefGoogle Scholar
  60. 60.
    Yang G, Alkotami H, Lei S (2018) Discrete element simulation of orthogonal machining of soda-lime glass. Manuf Mater Process 2:1–10.  https://doi.org/10.3390/jmmp2010010 CrossRefGoogle Scholar
  61. 61.
    Illoul L, Lorong P (2011) On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing. Comput Struct 89:940–958.  https://doi.org/10.1016/j.compstruc.2011.01.018 CrossRefGoogle Scholar
  62. 62.
    Kahwash F, Shyha I, Maheri A (2018) Dynamic simulation of machining composites using the explicit element-free Galerkin method. Compos Struct 198:156–173.  https://doi.org/10.1016/j.compstruct.2018.05.034 CrossRefGoogle Scholar
  63. 63.
    Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209.  https://doi.org/10.1016/S0022-5096(99)00029-0 MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Ahadi A, Hansson P, Melin S (2016) Indentation of thin copper film using molecular dynamics and peridynamics. Procedia Struct Integr 2:1343–1350.  https://doi.org/10.1016/j.prostr.2016.06.171 CrossRefGoogle Scholar
  65. 65.
    Rokkam SK, Truong QT, Gunzburger M, Goel K (2018) A peridynamics-FEM approach for crack path prediction in fiber-reinforced composites. AIAA/ASCE/AHS/ASC Struct Struct Dyn Mater Conf 2018:1–11.  https://doi.org/10.2514/6.2018-0651 CrossRefGoogle Scholar
  66. 66.
    Wu CT, Ren B (2015) A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput Methods Appl Mech Eng 291:197–215.  https://doi.org/10.1016/j.cma.2015.03.003 MathSciNetCrossRefGoogle Scholar
  67. 67.
    Jiang H, He L, Fan L, Zhan G (2017) Numerical analysis method of cemented carbide turning tool’s micro breakage based on peridynamic theory. Int J Adv Manuf Technol 88:1619–1628.  https://doi.org/10.1007/s00170-016-8716-z CrossRefGoogle Scholar
  68. 68.
    Rentsch R, Inasaki I (1994) Molecular dynamics simulation for abrasive processes. CIRP Ann 43:327–330.  https://doi.org/10.1016/S0007-8506(07)62224-0 CrossRefGoogle Scholar
  69. 69.
    Maekawa K, Itoh A (1995) Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear 188:115–122.  https://doi.org/10.1016/0043-1648(95)06633-0 CrossRefGoogle Scholar
  70. 70.
    Zhang L, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211:44–53.  https://doi.org/10.1016/S0043-1648(97)00073-2 CrossRefGoogle Scholar
  71. 71.
    Cui DD, Mylvaganam K, Zhang LC (2011) Nano-grooving on copper by nano-milling and nano-cutting. Adv Mater Res 325:576–581.  https://doi.org/10.4028/www.scientific.net/AMR.325.576 CrossRefGoogle Scholar
  72. 72.
    Shimizu J, Zhou LB, Eda H (2002) Simulation and experimental analysis of super high-speed grinding of ductile material. J Mater Process Technol 129:19–24.  https://doi.org/10.1016/S0924-0136(02)00568-X CrossRefGoogle Scholar
  73. 73.
    Goel S, Luo X, Reuben RL, Bin Rashid W (2012) Replacing diamond cutting tools with CBN for efficient nanometric cutting of silicon. Mater Lett 68:507–509.  https://doi.org/10.1016/j.matlet.2011.11.028 CrossRefGoogle Scholar
  74. 74.
    Goel S, Luo X, Reuben RL (2012) Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput Mater Sci 51:402–408.  https://doi.org/10.1016/j.commatsci.2011.07.052 CrossRefGoogle Scholar
  75. 75.
    Ji C, Shi J, Liu Z, Wang Y (2013) Comparison of tool–chip stress distributions in nano-machining of monocrystalline silicon and copper. Int J Mech Sci 77:30–39.  https://doi.org/10.1016/j.ijmecsci.2013.09.024 CrossRefGoogle Scholar
  76. 76.
    Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310.  https://doi.org/10.1016/0920-2307(93)90001-U CrossRefGoogle Scholar
  77. 77.
    Goel S, Luo X, Reuben RL, Bin Rashid W (2011) Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting. Nanoscale Res Lett 6:589.  https://doi.org/10.1186/1556-276X-6-589 CrossRefGoogle Scholar
  78. 78.
    Yan YD, Sun T, Dong S et al (2006) Molecular dynamics simulation of processing using AFM pin tool. Appl Surf Sci 252:7523–7531.  https://doi.org/10.1016/j.apsusc.2005.09.005 CrossRefGoogle Scholar
  79. 79.
    Liang YC, Wang ZG, Chen MJ et al (2011) Potential analysis in nanoturning of single crystal silicon using molecular dynamics. Adv Mater Res 239–242:3236–3239.  https://doi.org/10.4028/www.scientific.net/AMR.239-242.3236 CrossRefGoogle Scholar
  80. 80.
    Cai MB, Li XP, Rahman M (2007) Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear 263:1459–1466.  https://doi.org/10.1016/j.wear.2006.11.030 CrossRefGoogle Scholar
  81. 81.
    Goel S, Luo X, Reuben RL, Pen H (2012) Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 284–285:65–72.  https://doi.org/10.1016/j.wear.2012.02.010 CrossRefGoogle Scholar
  82. 82.
    Komanduri R, Chandrasekaran N, Raff LM (2000) M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting. Wear 242:60–88.  https://doi.org/10.1016/S0043-1648(00)00389-6 CrossRefGoogle Scholar
  83. 83.
    Luo X, Tong Z, Liang Y (2014) Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures. Appl Surf Sci 321:495–502.  https://doi.org/10.1016/j.apsusc.2014.10.052 CrossRefGoogle Scholar
  84. 84.
    Gong Y, Zhu Z, Zhou Y, Sun Y (2016) Research on the nanometric machining of a single crystal nickel via molecular dynamics simulation. Sci China Technol Sci 59:1837–1846.  https://doi.org/10.1007/s11431-016-0251-y CrossRefGoogle Scholar
  85. 85.
    Lin Y-C, Shiu Y-C (2017) Effect of crystallographic orientation on single crystal copper nanogrooving behaviors by MD method. Int J Adv Manuf Technol 89:3207–3215.  https://doi.org/10.1007/s00170-016-9282-0 CrossRefGoogle Scholar
  86. 86.
    Wang Q, Bai Q, Chen J et al (2015) Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper. Appl Surf Sci 355:1153–1160.  https://doi.org/10.1016/j.apsusc.2015.06.176 CrossRefGoogle Scholar
  87. 87.
    Markopoulos AP, Karkalos NE, Kalteremidou K-AL et al (2015) The influence of cutting conditions and cutting tool geometry on the atomistic modeling of precision cutting. Eng Solid Mech 3:195–206.  https://doi.org/10.5267/j.esm.2015.4.001 CrossRefGoogle Scholar
  88. 88.
    Goel S, Luo X, Reuben RL (2012) Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl Phys Lett.  https://doi.org/10.1063/1.4726036 CrossRefGoogle Scholar
  89. 89.
    Luo X, Goel S, Reuben RL (2012) A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. J Eur Ceram Soc 32:3423–3434.  https://doi.org/10.1016/j.jeurceramsoc.2012.04.016 CrossRefGoogle Scholar
  90. 90.
    Goel S, Luo XC, Reuben RL et al (2012) Single point diamond turning of single crystal silicon carbide: molecular dynamic simulation study. Key Eng Mater 496:150–155.  https://doi.org/10.4028/www.scientific.net/KEM.496.150 CrossRefGoogle Scholar
  91. 91.
    Goel S, Stukowski A, Luo X, Agrawal A, Reuben RL (2013) Anisotropy of single-crystal 3C–SiC during nanometric cutting. Model Simul Mater Sci Eng 21:65004CrossRefGoogle Scholar
  92. 92.
    Li XP, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259:1207–1214.  https://doi.org/10.1016/j.wear.2004.12.020 CrossRefGoogle Scholar
  93. 93.
    Lin Z-C, Huang J-C, Jeng Y-R (2007) 3D nano-scale cutting model for nickel material. J Mater Process Technol 192–193:27–36.  https://doi.org/10.1016/j.jmatprotec.2007.04.074 CrossRefGoogle Scholar
  94. 94.
    Shimizu J, Eda H, Zhou L, Okabe H (2008) Molecular dynamics simulation of adhesion effect on material removal and tool wear in diamond grinding of silicon wafer. Tribol Online 3:248–253.  https://doi.org/10.2474/trol.3.248 CrossRefGoogle Scholar
  95. 95.
    Cui DD, Mylvaganam K, Zhang LC (2012) Atomic-scale grooving on copper: end-milling vsperipheral-milling. Adv Mater Res 565:546–551.  https://doi.org/10.4028/www.scientific.net/AMR.565.546 CrossRefGoogle Scholar
  96. 96.
    Cui DD, Zhang LC, Mylvaganam K (2014) Nano-milling on copper: grooving quality and critical depth of cut. J Comput Theor Nanosci 11:964–970.  https://doi.org/10.1166/jctn.2014.3451 CrossRefGoogle Scholar
  97. 97.
    Wu C-D, Fang T-H, Kuo C-H (2015) Nanomilling mechanism on Cu surfaces investigated using atomistic simulation. Mol Simul 41:1159–1165.  https://doi.org/10.1080/08927022.2014.952635 CrossRefGoogle Scholar
  98. 98.
    Komanduri R, Chandrasekaran N, Raff LM (1999) Some aspects of machining with negative-rake tools simulating grinding: a molecular dynamics simulation approach. Philos Mag B 79:955–968.  https://doi.org/10.1080/13642819908214852 CrossRefGoogle Scholar
  99. 99.
    Guo X, Li Q, Liu T et al (2016) Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Mater Sci Semicond Process 51:15–19.  https://doi.org/10.1016/j.mssp.2016.04.013 CrossRefGoogle Scholar
  100. 100.
    Agrawal PM, Narulkar R, Bukkapatnam S et al (2010) A phenomenological model of polishing of silicon with diamond abrasive. Tribol Int 43:100–107.  https://doi.org/10.1016/j.triboint.2009.05.003 CrossRefGoogle Scholar
  101. 101.
    Zong WJ, Cheng X, Zhang JJ (2016) Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon N Y 99:186–194.  https://doi.org/10.1016/j.carbon.2015.12.001 CrossRefGoogle Scholar
  102. 102.
    Eder SJ, Bianchi D, Cihak-Bayr U et al (2014) An analysis method for atomistic abrasion simulations featuring rough surfaces and multiple abrasive particles. Comput Phys Commun 185:2456–2466.  https://doi.org/10.1016/j.cpc.2014.05.018 CrossRefGoogle Scholar
  103. 103.
    Eder SJ, Cihak-Bayr U, Pauschitz A (2015) Nanotribological simulations of multi-grit polishing and grinding. Wear 340–341:25–30.  https://doi.org/10.1016/j.wear.2015.03.006 CrossRefGoogle Scholar
  104. 104.
    Eder SJ, Cihak-Bayr U, Bianchi D (2016) Single-asperity contributions to multi-asperity wear simulated with molecular dynamics. IOP Conf Ser Mater Sci Eng.  https://doi.org/10.1088/1757-899X/119/1/012009 CrossRefGoogle Scholar
  105. 105.
    Karkalos NE, Markopoulos AP, Kundrák J (2017) Molecular dynamics model of nano-metric peripheral grinding. Procedia CIRP 58:281–286.  https://doi.org/10.1016/j.procir.2017.03.189 CrossRefGoogle Scholar
  106. 106.
    González C, Lorca J (2006) Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater 54:4171–4181.  https://doi.org/10.1016/j.actamat.2006.05.007 CrossRefGoogle Scholar
  107. 107.
    Huo D (2013) Micro-cutting: fundamentals and applications. Wiley, SussexGoogle Scholar
  108. 108.
    Sun Xizhi, Chen Shijin, Cheng Kai, Dehong Huo WC (2006) Multiscale simulation on nanometric cutting of single crystal copper. Proc Inst Mech Eng Part B J Eng Manuf 220:1217–1222.  https://doi.org/10.1243/09544054JEM540SC CrossRefGoogle Scholar
  109. 109.
    Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73:1529–1563.  https://doi.org/10.1080/01418619608243000 CrossRefGoogle Scholar
  110. 110.
    Zhu P, Hu Y, Fang F, Wang H (2012) Multiscale simulations of nanoindentation and nanoscratch of single crystal copper. Appl Surf Sci 258:4624–4631.  https://doi.org/10.1016/j.apsusc.2012.01.041 CrossRefGoogle Scholar
  111. 111.
    Fang C, Yang X (2014) Study of nanocontact and incipient nanoscratch process using the quasicontinuum method. Mater Sci Eng A 600:221–230.  https://doi.org/10.1016/j.msea.2014.02.027 CrossRefGoogle Scholar
  112. 112.
    To S, Wang H, Bing Lee W (2018) Materials characterisation and mechanism of micro-cutting in ultra-precision diamond turning. Springer, Berlin.  https://doi.org/10.1007/978-3-662-54823-3 CrossRefGoogle Scholar
  113. 113.
    Zhang L, Zhao H, Guo W et al (2014) Quasicontinuum analysis of the effect of tool geometry on nanometric cutting of single crystal copper. Optik (Stuttg) 125:682–687.  https://doi.org/10.1016/j.ijleo.2013.07.037 CrossRefGoogle Scholar
  114. 114.
    Han X (2014) Micro and nanomachining technology-size. Model and Complex Mechanism, BenthamGoogle Scholar
  115. 115.
    Liang YC, Pen HM, Bai QS (2009) Quasicontinuum method simulation of nanometric cutting of single crystal copper. Mater Sci Forum 628–629:381–386.  https://doi.org/10.4028/www.scientific.net/MSF.628-629.381 CrossRefGoogle Scholar
  116. 116.
    Pen HM, Liang YC, Luo XC et al (2011) Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Comput Mater Sci 50:3431–3441.  https://doi.org/10.1016/j.commatsci.2011.07.005 CrossRefGoogle Scholar
  117. 117.
    Qin Y (2015) Micromanufacturing engineering and technology, 2nd edn. Elsevier, LondonGoogle Scholar
  118. 118.
    Sun X, Cheng K (2010) Multi-scale simulation of the nano-metric cutting process. Int J Adv Manuf Technol 47:891–901.  https://doi.org/10.1007/s00170-009-2125-5 CrossRefGoogle Scholar
  119. 119.
    Pen H, Bai Q, Liang Y, Chen M (2009) Multiscale simulation of nanometric cutting of single crystal copper—effect of different cutting speeds. Acta Metall Sin English Lett 22:440–446.  https://doi.org/10.1016/S1006-7191(08)60121-0 CrossRefGoogle Scholar
  120. 120.
    Pen HM, Bai QS, Liang YC (2010) Quasicontinuum simulation of effect of crystal orientation and cutting direction of on nanometric cutting of single crystal copper. Key Eng Mater 431–432:154–157.  https://doi.org/10.4028/www.scientific.net/KEM.431-432.154 CrossRefGoogle Scholar
  121. 121.
    Fang C, Meng X, Xie Y, Zhao B (2016) Quasicontinuum investigation of the feedback effects on friction behavior of an abrasive particle over a single crystal aluminum substrate. Tribol Int 98:48–58.  https://doi.org/10.1016/j.triboint.2016.02.020 CrossRefGoogle Scholar
  122. 122.
    Shiari B, Miller RE, Klug DD (2007) Multiscale simulation of material removal processes at the nanoscale. J Mech Phys Solids 55:2384–2405.  https://doi.org/10.1016/j.jmps.2007.03.018 zbMATHCrossRefGoogle Scholar
  123. 123.
    Lin Z-C, Huang J-C (2004) A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology 15:510CrossRefGoogle Scholar
  124. 124.
    Lin Z-C, Chen Z-D, Huang J-C (2007) Establishment of a cutting force model and study of the stress–strain distribution in nano-scale copper material orthogonal cutting. Int J Adv Manuf Technol 33:425–435.  https://doi.org/10.1007/s00170-006-0480-z CrossRefGoogle Scholar
  125. 125.
    Inamura T, Takezawa N, Kumaki Y (1993) Mechanics and energy dissipation in nanoscale cutting. CIRP Ann 42:79–82.  https://doi.org/10.1016/S0007-8506(07)62396-8 CrossRefGoogle Scholar
  126. 126.
    Liu X, DeVor RE, Kapoor SG, Ehmann KF (2005) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng 126:666–678CrossRefGoogle Scholar
  127. 127.
    Lin Z-C, Huang J-C (2008) The influence of different cutting speeds on the cutting force and strain–stress behaviors of single crystal copper during nano-scale orthogonal cutting. J Mater Process Technol 201:477–482.  https://doi.org/10.1016/j.jmatprotec.2007.11.259 CrossRefGoogle Scholar
  128. 128.
    Lin Z-C, Lin M-H, Hsu Y-C (2014) Simulation of temperature field during nanoscale orthogonal cutting of single-crystal silicon by molecular statics method. Comput Mater Sci 81:58–67.  https://doi.org/10.1016/j.commatsci.2013.07.018 CrossRefGoogle Scholar
  129. 129.
    Chen MJ, Xiao GB, Li D, Wu CY (2012) Multiscale modeling study on the nanometric cutting process of CaF2. Key Eng Mater 516:13–18.  https://doi.org/10.4028/www.scientific.net/KEM.516.13 CrossRefGoogle Scholar
  130. 130.
    Aly MF, Ng E, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46:1727–1739.  https://doi.org/10.1016/j.ijmachtools.2005.12.008 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  1. 1.Laboratory of Manufacturing Technology, School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations