Advertisement

Archives of Computational Methods in Engineering

, Volume 26, Issue 5, pp 1593–1606 | Cite as

Mathematical Framework Behind the Reconstruction and Analysis of Genome Scale Metabolic Models

  • W. Pinzon
  • H. Vega
  • J. GonzalezEmail author
  • A. Pinzon
Original Paper

Abstract

Scale Metabolic Models (GEMs) emerged as a formal concept to describe metabolic pathways reconstructed from the information present in the genome of living systems as well as in the biochemical reactions described in the literature. This formalization involves steps including determination of their stoichiometry and definition of model constraints. Genome Scale Metabolic Models (GEMs) are mathematically structured knowledge that can be used to generate and test biological hypotheses when integrated with experimental data. Recently the community started to recognize the potential of GEMS and their analysis with constraint-based modeling. Therefore, when using GEMs for applications including in silico metabolic engineering, it´s important to understand the assumption behind its mathematical framework, but usually the theory behind is not accessible to a broad audience in one place. This work aims to present a concise theoretical and practical introduction to GEMS that is accessible to a broad audience getting them closer to the use and applications of GEMS.

Notes

Acknowledgements

This work was supported by Universidad San Buenaventura (Engineering faculty) and Pontificia Universidad Javeriana, Grants 7740, 7714 and 7425 to J. González.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states there is no conflict of interest.

References

  1. 1.
    Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416CrossRefGoogle Scholar
  2. 2.
    Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982CrossRefGoogle Scholar
  3. 3.
    Kim B, Kim WJ, Kim DI, Lee SY (2015) Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol 42:339–348CrossRefGoogle Scholar
  4. 4.
    McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9(1):661CrossRefGoogle Scholar
  5. 5.
    Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299CrossRefGoogle Scholar
  6. 6.
    Liu L, Chen J (2010) Reconstruction and application of genome-scale metabolic network model. Sheng Wu Gong Cheng Xue Bao 26(9):1176–1186Google Scholar
  7. 7.
    Occhipinti R, Puchowicz MA, Lamanna JC, Somersalo E, Calvetti D (2007) Statistical analysis of metabolic pathways of brain metabolism at steady state. Ann Biomed Eng 35(6):886–902CrossRefGoogle Scholar
  8. 8.
    Resendis-Antonio O (2009) Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking”. PLoS One 4(3):e4967CrossRefGoogle Scholar
  9. 9.
    Distefano S, Liudong X (2006) A new approach to modeling the system reliability: dynamic reliability block diagrams. In: Proceedings—annual reliability and maintainability symposium, pp 189–195Google Scholar
  10. 10.
    Vargas FA, Pizarro F, Pérez-Correa JR, Agosin E (2011) Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst Biol 5:75CrossRefGoogle Scholar
  11. 11.
    Becker SA, Feist AM, Palsson BØ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738CrossRefGoogle Scholar
  12. 12.
    Schellenberger J et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307CrossRefGoogle Scholar
  13. 13.
    Martins-de-Souza D et al (2015) The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteom Clin Appl 9(9–10):817–831CrossRefGoogle Scholar
  14. 14.
    Amaral AI, Teixeira AP, Håkonsen BI, Sonnewald U, Alves PM (2011) A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose. Front Neuroenerg 3:5CrossRefGoogle Scholar
  15. 15.
    Ben Achour S, Pascual O (2012) Astrocyte-neuron communication: functional consequences. Neurochem Res 37(11):2464–2473CrossRefGoogle Scholar
  16. 16.
    Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JAS (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS One 6(12):e29445.  https://doi.org/10.1371/journal.pone.0029445 CrossRefGoogle Scholar
  17. 17.
    Occhipinti R, Somersalo E, Calvetti D (2010) Energetics of inhibition: insights with a computational model of the human GABAergic neuron–astrocyte cellular complex. J Cereb Blood Flow Metab 30(10):1834–1846CrossRefGoogle Scholar
  18. 18.
    Calvetti D, Somersalo E (2013) Quantitative in silico analysis of neurotransmitter pathways under steady state conditions. Front Endocrinol (Lausanne) 4:137CrossRefGoogle Scholar
  19. 19.
    Lewis NE et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285.  https://doi.org/10.1038/nbt.1711 CrossRefGoogle Scholar
  20. 20.
    Kalantari E, Saadi FH, Asgari M, Shariftabrizi A, Roudi R, Madjd Z (2016) Increased expression of ALDH1A1 in prostate cancer is correlated with tumor aggressiveness: a tissue microarray study of Iranian patients. Appl Immunohistochem Mol Morphol 0(0):1–7Google Scholar
  21. 21.
    Pinto F, Medina DA, Pérez-Correa JR, Garrido D (2017) Modeling metabolic interactions in a consortium of the infant gut microbiome”. Front Microbiol 8:2507CrossRefGoogle Scholar
  22. 22.
    Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5(7):647–659CrossRefGoogle Scholar
  23. 23.
    Monk J, Nogales J, Palsson BO (2014) Optimizing genome-scale network reconstructions. Nat Biotechnol 32(5):447–452CrossRefGoogle Scholar
  24. 24.
    Kim TY, Sohn SB, Bin Kim Y, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623CrossRefGoogle Scholar
  25. 25.
    Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ (2013) Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol J 8(9):997–1008CrossRefGoogle Scholar
  26. 26.
    Logsdon BA, Mezey J (2010) Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations. PLoS Comput Biol 6(12):e1001014MathSciNetCrossRefGoogle Scholar
  27. 27.
    Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, Masoudi-Nejad A (2014) Genome scale modeling in systems biology: algorithms and resources. Curr Genom 15(2):130–159CrossRefGoogle Scholar
  28. 28.
    Palsson B (2006) Finding functional states. In: Systems biology: properties of reconstructed networks. Cambridge University Press, pp 244–264Google Scholar
  29. 29.
    Sauro H (2014) Systems biology: linear algebra for pathway modeling. Ambrosius Publishing, LeipzigGoogle Scholar
  30. 30.
    Di Stefano J (2013) Dynamic systems biology modeling and simulation, 1st edn. Academic Press, Cambridge. ISBN 9780124104112Google Scholar
  31. 31.
    Pfeiffer T et al (1999) METATOOL: for studying metabolic networks. Bioinformatics 15(3):251–257CrossRefGoogle Scholar
  32. 32.
    Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41CrossRefGoogle Scholar
  33. 33.
    Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18(3):326–332CrossRefGoogle Scholar
  34. 34.
    Xavier D, Vázquez S, Higuera C, Morán F, Montero F (2011) Tools-4-Metatool (T4M): online suite of web-tools to process stoichiometric network analysis data from Metatool. BioSystems 105(2):169–172CrossRefGoogle Scholar
  35. 35.
    Burgard AP, Maranas CD (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82(6):670–677CrossRefGoogle Scholar
  36. 36.
    Agutter PS (2005) Review of ‘systems biology in practice’ by Edda Klipp, Ralf Hertwig, Axel Kowald, Christoph Wierling and Hans Lehrach. Theor Biol Med Model 2(1):34CrossRefGoogle Scholar
  37. 37.
    Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104(6):1777–1782CrossRefGoogle Scholar
  38. 38.
    Li YX, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J Theor Biol 166:461–473CrossRefGoogle Scholar
  39. 39.
    Calvetti D, Somersalo E (2012) Ménage à trois: the role of neurotransmitters in the energy metabolism of astrocytes, glutamatergic, and GABAergic neurons. J Cereb Blood Flow Metab 32:1472–1483.  https://doi.org/10.1038/jcbfm.2012.31 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.Universidad San BuenaventuraBogotá, D.C.Colombia
  2. 2.Laboratorio de Bioquímica Computacional Estructural y BioinformáticaPontificia Universidad JaverianaBogotá, D.C.Colombia
  3. 3.Laboratorio de Bioinformática y Biología de SistemasUniversidad Nacional de ColombiaBogotá, D.C.Colombia

Personalised recommendations