Advertisement

Weighted Average Continuity Approach and Moment Correction: New Strategies for Non-consistent Mesh Projection in Structural Mechanics

  • Simone Coniglio
  • Christian Gogu
  • Joseph Morlier
Original Paper
  • 44 Downloads

Abstract

Tying non-matching meshes is needed in many instances of finite element modeling. Multiple techniques have been proposed in the literature to accomplish the correct communication between different discretizations. They all seek to achieve some trade-off in terms of accuracy, complexity and computational cost. In this work we review several of the existing techniques and benchmark them on several simple test problems in terms of accuracy and computational cost. We also discuss some of the drawbacks and limitations of the existing methods. We then propose two novel contributions. First, a new approach that imposes the continuity of the displacement field at the interface in a point-wise manner only after an integral weighted averaging procedure over each interface. Second, a procedure for the correction of the interpolation operator based on the balance of internal forces and moments at the interface is proposed, which is applicable to all the reviewed methods, both existing and the new proposed one. All the considered approaches are benchmarked on several test problems in terms of various error measures for displacements, stresses, interface forces and moments, total work at the interface and computational cost.

Notes

Acknowledgements

This work has been partially funded by the Association Nationale de la Recherche et de la Technologie (ANRT) through Grant No. CIFRE-2016/0539. We would also like to thank Dr. Simone Deparis (EPFL) for fruitful discussions, in particular with respect to the Internodes method.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest

References

  1. 1.
    Aminpour MA, Ransom JB, McCleary SL (1995) A coupled analysis method for structures with independently modelled finite element subdomains. Int J Numer Methods Eng 38(21):3695–3718CrossRefGoogle Scholar
  2. 2.
    Babuška I (1973) The finite element method with lagrangian multipliers. Numerische Math 20(3):179–192MathSciNetCrossRefGoogle Scholar
  3. 3.
    Babuška I, Narasimhan R (1997) The babuška-brezzi condition and the patch test: an example. Comput Methods Appl Mech Eng 140(1–2):183–199CrossRefGoogle Scholar
  4. 4.
    Barlow J (1982) Constraint relationships in linear and nonlinear finite element analyses. Int J Numer Methods Eng 18(4):521–533CrossRefGoogle Scholar
  5. 5.
    Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decomposition with non-matching grids. ESAIM Math Model Numer Anal 37(2):209–225MathSciNetCrossRefGoogle Scholar
  6. 6.
    Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134CrossRefGoogle Scholar
  7. 7.
    Bernardi C, Maday Y, Patera A (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications: Collège de France seminar volume XI (Paris, 1989 –1991), Pitman research notes in mathematics series, vol 299. Longman Sci. Tech., Harlow, pp 13–51 Google Scholar
  8. 8.
    Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. Asymptot Numer Methods Partial Differ Equ Crit Parameters 384:269–286MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press, CambridgezbMATHGoogle Scholar
  10. 10.
    Bitencourt LA, Manzoli OL, Prazeres PG, Rodrigues EA, Bittencourt TN (2015) A coupling technique for non-matching finite element meshes. Comput Methods Appl Mech Eng 290:19–44MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bochev P, Day D (2007) A least-squares method for consistent mesh tying. Int J Numer Anal Model 4:342–352MathSciNetzbMATHGoogle Scholar
  12. 12.
    de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng 197(49):4284–4297CrossRefGoogle Scholar
  13. 13.
    Brandt A (2002) Multiscale scientific computation: review 2001. Springer, Berlin, pp 3–95zbMATHGoogle Scholar
  14. 14.
    Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Cafiero M, Lloberas-Valls O, Cante J, Oliver J (2016) The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems. Comput Mech 57:555MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cebral JR, Lohner R (1997) Conservative load projection and tracking for fluid-structure problems. AIAA J 35(4):687–692CrossRefGoogle Scholar
  17. 17.
    Cho YS, Im S (2006) Mls-based variable-node elements compatible with quadratic interpolation. part i: formulation and application for non-matching meshes. Int J Numer Methods Eng 65(4):494–516CrossRefGoogle Scholar
  18. 18.
    Cho YS, Im S (2006) Mls-based variable-node elements compatible with quadratic interpolation. part ii: application for finite crack element. Int J Numer Methods Eng 65(4):517–547CrossRefGoogle Scholar
  19. 19.
    Cho YS, Jun S, Im S, Kim HG (2005) An improved interface element with variable nodes for non-matching finite element meshes. Comput Methods Appl Mech Eng 194(27):3022–3046CrossRefGoogle Scholar
  20. 20.
    Christensen P, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fj D, Van DA (1996) Computer graphics principles & practice second edition in c. Addison-Wesley, BostonGoogle Scholar
  22. 22.
    Davidon W (1959) Aec research and development report. ANL-5990Google Scholar
  23. 23.
    De Boer A, Van Zuijlen A, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Applied Mech Eng 196(8):1515–1525MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dennis JE Jr, Moré JJ (1977) Quasi-newton methods, motivation and theory. SIAM Rev 19(1):46–89MathSciNetCrossRefGoogle Scholar
  25. 25.
    Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  26. 26.
    Deparis S, Forti D, Gervasio P, Quarteroni A (2016) Internodes: an accurate interpolation-based method for coupling the galerkin solutions of pdes on subdomains featuring non-conforming interfaces. Comput Fluids 141:22–41MathSciNetCrossRefGoogle Scholar
  27. 27.
    Deparis S, Forti D, Quarteroni A (2014) A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J Sci Comput 36(6):A2745–A2762MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dhia HB, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures in the arlequin framework: solution with a domain-decomposition solver. Eur J Comput Mech /Revue Européenne de Mécanique Numérique 17(5–7):969–980CrossRefGoogle Scholar
  29. 29.
    Dhia HB, Rateau G (2005) The arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11):1442–1462CrossRefGoogle Scholar
  30. 30.
    Dohrmann C, Key S, Heinstein M (2000) A method for connecting dissimilar finite element meshes in two dimensions. Int J Numer Methods Eng 48(5):655–678CrossRefGoogle Scholar
  31. 31.
    Dohrmann C, Key S, Heinstein M (2000) Methods for connecting dissimilar three-dimensional finite element meshes. Int J Numer Methods Eng 47(5):1057–1080CrossRefGoogle Scholar
  32. 32.
    Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197(6):487–504MathSciNetCrossRefGoogle Scholar
  33. 33.
    Duchon J (1977) Splines minimizing rotation-invariant semi-norms in sobolev spaces. In: Constructive theory of functions of several variables. Springer, Berlin, Heidelberg, pp 85–100CrossRefGoogle Scholar
  34. 34.
    Duval M, Passieux JC, Salaün M, Guinard S (2016) Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch Comput Methods Eng 23(1):17MathSciNetCrossRefGoogle Scholar
  35. 35.
    Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1–2):95–114MathSciNetCrossRefGoogle Scholar
  36. 36.
    Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227MathSciNetCrossRefGoogle Scholar
  37. 37.
    Feyel F, Chaboche JL (2000) Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330CrossRefGoogle Scholar
  38. 38.
    Fish J, Belsky V, Pandheeradi M (1995) Iterative and direct solvers for interface problems with lagrange multipliers. Comput Syst Eng 6(3):261–273CrossRefGoogle Scholar
  39. 39.
    Flemisch B, Kaltenbacher M, Triebenbacher S, Wohlmuth B (2012) Non-matching grids for a flexible discretization in computational acoustics. Commun Comput Phys 11(2):472–488MathSciNetCrossRefGoogle Scholar
  40. 40.
    Fletcher R, Powell MJ (1963) A rapidly convergent descent method for minimization. Comput J 6(2):163–168MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gander MJ, Japhet C (2013) Algorithm 932: Pang: software for nonmatching grid projections in 2d and 3d with linear complexity. ACM Trans Math Softw (TOMS) 40(1):6MathSciNetCrossRefGoogle Scholar
  42. 42.
    Gervasio P, Quarteroni A (2018) Analysis of the internodes method for non-conforming discretizations of elliptic equations. Comput Methods Appl Mech Eng 334:138–166MathSciNetCrossRefGoogle Scholar
  43. 43.
    Hartmann S, Oliver J, Weyler R, Cante J, Hernández J (2009) A contact domain method for large deformation frictional contact problems. part 2: numerical aspects. Comput Methods Appl Mech Eng 198(33):2607–2631CrossRefGoogle Scholar
  44. 44.
    Heintz P, Hansbo P (2006) Stabilized lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33):4323–4333MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hinton E, Campbell J (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8(3):461–480MathSciNetCrossRefGoogle Scholar
  46. 46.
    Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377MathSciNetCrossRefGoogle Scholar
  47. 47.
    Jeong GE, Youn SK, Park K (2017) Element-independent implementation for method of lagrange multipliers. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 11(2):343–347Google Scholar
  48. 48.
    Kim HG (2003) Interface element method: treatment of non-matching nodes at the ends of interfaces between partitioned domains. Comput Methods Appl Mech Eng 192(15):1841–1858CrossRefGoogle Scholar
  49. 49.
    Lim JH, Im S, Cho YS (2007) Mls (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement. Comput Methods Appl Mech Eng 196(17):2216–2228CrossRefGoogle Scholar
  50. 50.
    Lim JH, Im S, Cho YS (2007) Variable-node elements for non-matching meshes by means of mls (moving least-square) scheme. Int J Numer Methods Eng 72(7):835–857CrossRefGoogle Scholar
  51. 51.
    Lloberas-Valls O, Cafiero M, Cante J, Ferrer A, Oliver J (2017) The domain interface method in non-conforming domain decomposition multifield problems. Comput Mech 59(4):579–610MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366MathSciNetCrossRefGoogle Scholar
  53. 53.
    Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) On micro-to-macro connections in domain decomposition multiscale methods. Comput Methods Appl Mech Eng 225:177–196MathSciNetCrossRefGoogle Scholar
  54. 54.
    Löhner R, Yang C, Cebral J, Baum JD, Luo H, Pelessone D, Charman C (1998) Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids. In: Proceedings of the 29th AIAA fluid dynamics conferenceGoogle Scholar
  55. 55.
    Mandel J (1993) Balancing domain decomposition. Int J Numer Methods Biomed Eng 9(3):233–241MathSciNetzbMATHGoogle Scholar
  56. 56.
    McGee W, Seshaiyer P (2005) Non-conforming finite element methods for nonmatching grids in three dimensions. In: Domain decomposition methods in science and engineering. Springer, Berlin, Heidelberg, pp 327–334Google Scholar
  57. 57.
    Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Proceedings of Mathematischen Seminar der Universität Hamburg. Springer-Verlag, p 9–15Google Scholar
  58. 58.
    Oliver J, Hartmann S, Cante J, Weyler R, Hernández J (2009) A contact domain method for large deformation frictional contact problems. part 1: theoretical basis. Comput Methods Appl Mech Eng 198(33):2591–2606CrossRefGoogle Scholar
  59. 59.
    Park K, Felippa C, Rebel G (2002) A simple algorithm for localized construction of non-matching structural interfaces. Int J Numer Methods Eng 53(9):2117–2142CrossRefGoogle Scholar
  60. 60.
    Puso MA (2004) A 3d mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336MathSciNetCrossRefGoogle Scholar
  61. 61.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6):601–629CrossRefGoogle Scholar
  62. 62.
    Quiroz L, Beckers P (1995) Non-conforming mesh gluing in the finite elements method. Int J Numer Methods Eng 38(13):2165–2184CrossRefGoogle Scholar
  63. 63.
    Rixen DJ (1997) Substructuring and dual methods in structural analysis. Ph.D. thesisGoogle Scholar
  64. 64.
    Shi ZC (1987) The fem test for convergence of nonconforming finite elements. Math Comput 49(180):391–405zbMATHGoogle Scholar
  65. 65.
    Shillor M, Sofonea M, Telega JJ (2004) 7 Elastic contact. In: Models and Analysis of Quasistatic Contact. Springer, Berlin, Heidelberg, p 101–115CrossRefGoogle Scholar
  66. 66.
    Smith MJ, Cesnik CE, Hodges DH (2000) Evaluation of some data transfer algorithms for noncontiguous meshes. J Aerosp Eng 13(2):52–58CrossRefGoogle Scholar
  67. 67.
    Sofonea M, Han W, Shillor M (2005) Analysis and approximation of contact problems with adhesion or damage. CRC Press, Boca RatonCrossRefGoogle Scholar
  68. 68.
    Song YU, Youn SK, Park K (2017) Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements. Comput Mech 60:1–10MathSciNetCrossRefGoogle Scholar
  69. 69.
    Stummel F (1979) The generalized patch test. SIAM J Numer Anal 16(3):449–471MathSciNetCrossRefGoogle Scholar
  70. 70.
    Stummel F (1980) The limitations of the patch test. Int J Numer Methods Eng 15(2):177–188CrossRefGoogle Scholar
  71. 71.
    Thévenaz P, Blu T, Unser M (2000) Interpolation revisited [medical images application]. IEEE Trans Med Imag 19(7):739–758CrossRefGoogle Scholar
  72. 72.
    Tian R, Yagawa G (2007) Non-matching mesh gluing by meshless interpolationan alternative to lagrange multipliers. Int J Numer Methods Eng 71(4):473–503CrossRefGoogle Scholar
  73. 73.
    Wang X, Prakash A, Chen JS, Taciroglu E (2017) Variationally consistent coupling of non-matching discretizations for large deformation problems. Comput Mech 60:465–478MathSciNetCrossRefGoogle Scholar
  74. 74.
    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396MathSciNetCrossRefGoogle Scholar
  75. 75.
    Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2(4):1–49MathSciNetCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.Institut Clément Ader (ICA),Université de Toulouse , CNRS, ISAE-SUPAERO, UPS, INSA, Mines-AlbiToulouseFrance
  2. 2.Airbus Operations S.A.S.Toulouse Cedex 09France

Personalised recommendations