Advertisement

Image Segmentation Using Computational Intelligence Techniques: Review

  • Siddharth Singh ChouhanEmail author
  • Ajay Kaul
  • Uday Pratap Singh
Original Paper

Abstract

Image segmentation methodology is a part of nearly all computer schemes as a pre-processing phase to excerpt more meaningful and useful information for analysing the objects within an image. Segmentation of an image is one of the most conjoint scientific matter, essential technology and critical constraint for image investigation and dispensation. There has been a lot of research work conceded in several emerging algorithms and approaches for segmentation, but even at present, no solitary standard technique has been proposed. The methodologies present are broadly classified among two classes i.e. traditional approaches and Soft computing approaches or Computational Intelligence (CI) approaches. In this article, our emphasis is to focus on Soft Computing (SC) techniques which has been adopted for segmenting an image. Nowadays, it is quite often seen that SC or CI is cast-off frequently in Information Technology and Computer Technology. However, Soft Computing approaches working synergistically provides in anyway, malleable information processing competence to manipulate real-life enigmatic circumstances. The impetus of these methodologies is to feat the lenience for ambiguity, roughness, imprecise acumen and partial veracity for the sake to attain compliance, sturdiness and economical results. Neural Networks (NNs), Fuzzy Logic (FL), and Genetic Algorithm (GA) are the fundamental approaches of SC regulation. SC approaches has been broadly implemented and studied in the number of applications including scientific analysis, medical, engineering, management, humanities etc. The paper focuses on introducing the various SC methodologies and presenting numerous applications in image segmentation. The acumen is to corroborate the probabilities of smearing computational intelligence to segmentation of an image. The available articles about usage of SC in segmentation are investigated, especially focusing on the core approaches like FL, NN and GA and efforts has been also made for collaborating new techniques like Fuzzy C-Means from FL family and Deep Neural Network or Convolutional Neural Network from NN family. The impression behind this work is to simulate core Soft Computing methodologies, along with encapsulating various terminologies like evaluation parameters, tools, databases, noises etc. which can be advantageous for researchers. This study also identifies approaches of SC being used, often collectively to resolve the distinctive dilemma of image segmentation, concluding with a general discussion about methodologies, applications followed by proposed work.

Notes

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Mesejo P, Ibanez O, Cordon O, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29.  https://doi.org/10.1016/j.asoc.2016.03.004 Google Scholar
  2. 2.
    Choy SK, Lam SY, Yu KW, Lee WY, Leung KT (2017) Fuzzy model-based clustering and its application in image segmentation. Pattern Recogn 68:141–157.  https://doi.org/10.1016/j.patcog.2017.03.009 Google Scholar
  3. 3.
    Li Y-l, Shen Y (2014) An automatic fuzzy c-means algorithm for image segmentation. Soft Comput 14:123–128.  https://doi.org/10.1007/s00500-009-0442-0 Google Scholar
  4. 4.
    Jiao L et al (2010) Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag 5:78–91.  https://doi.org/10.1109/MCI.2010.936307 Google Scholar
  5. 5.
    Jothi JAA, Rajam VMA (2017) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48:31–81.  https://doi.org/10.1007/s10462-016-9494-6 Google Scholar
  6. 6.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th international conference on computer vision, vol 2, pp 416–423Google Scholar
  7. 7.
    Zhao Q-H, Li X-L, Li Y, Zhao X-M (2017) A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and Voronoi tessellation. Pattern Recogn Lett 85:49–55.  https://doi.org/10.1016/j.patrec.2016.11.019 Google Scholar
  8. 8.
    Aghajaria E, Chandrashekhar GD (2017) Self-organizing map based extended fuzzy C-means (SEEFC) algorithm for image segmentation. Appl Soft Comput 54:347–363.  https://doi.org/10.1016/j.asoc.2017.01.003 Google Scholar
  9. 9.
    Borges VR et al (2015) An iterative fuzzy region competition algorithm for multiphase image segmentation. Soft Comput 19:339–351.  https://doi.org/10.1007/s00500-014-1256-2l Google Scholar
  10. 10.
    Bhaumik H, Bhattacharyya S, Nath MD, Chakraborty S (2016) Hybrid soft computing approaches to content based video retrieval: a brief review. Appl Soft Comput 46:1008–1029.  https://doi.org/10.1016/j.asoc.2016.03.022 Google Scholar
  11. 11.
    Jiang X-L, Wangb Q, He B, Chen S-J, Li B-L (2016) Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 207:22–35.  https://doi.org/10.1016/j.neucom.2016.03.046 Google Scholar
  12. 12.
    Ibrahim D (2016) An overview of soft computing. In: 12th international conference on application of fuzzy systems and soft computing, ICAFS 2016, Vienna, Austria, Procedia Comput Sci, vol 102, pp 34–38, 29–30.  https://doi.org/10.1016/j.procs.2016.09.366
  13. 13.
    Yardimci A (2009) Soft computing in medicine. Appl Soft Comput 9:1029–1043.  https://doi.org/10.1016/j.asoc.2009.02.003 Google Scholar
  14. 14.
    Huang Y et al (2010) Development of soft computing and applications in agricultural and biological engineering. Comput Electron Agric 71(2):107–127.  https://doi.org/10.1016/j.compag.2010.01.001 MathSciNetGoogle Scholar
  15. 15.
    Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24:522–533.  https://doi.org/10.1016/j.asoc.2014.08.011 Google Scholar
  16. 16.
    Indragandhi V, Subramaniyaswamy V, Logesh R (2017) Resources, configurations, and soft computing techniques for power management and control of PV/wind hybrid system. Renew Sustain Energy Rev 69:129–143.  https://doi.org/10.1016/j.rser.2016.11.209 Google Scholar
  17. 17.
    Singh V, Mishra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric 4(1):41–49.  https://doi.org/10.1016/j.inpa.2016.10.005 Google Scholar
  18. 18.
    Dwarakish GS, Nithyapriya B (2016) Application of soft computing techniques in coastal study—a review. J Ocean Eng Sci 1(4):247–255.  https://doi.org/10.1016/j.joes.2016.06.004 Google Scholar
  19. 19.
    Chang F-J, Chang L-C, Huang C-W, Kao I-F (2016) Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J Hydrol 541:965–976.  https://doi.org/10.1016/j.jhydrol.2016.08.006 Google Scholar
  20. 20.
    Poria S et al (2017) A review of affective computing: from unimodal analysis to multimodal fusion. Inf Fusion 37:98–125.  https://doi.org/10.1016/j.inffus.2017.02.003 Google Scholar
  21. 21.
    Francis J, Anto Sahaya Dhas D, Anoop BK (2016) Identification of leaf diseases in pepper plants using soft computing techniques. In: 2016 conference on emerging devices and smart systems (ICEDSS), pp 168–173.  https://doi.org/10.1109/icedss.2016.7587787
  22. 22.
    Sabzi S et al (2017) The use of soft computing to classification of some weeds based on video processing. Appl Soft Comput 56:107–123.  https://doi.org/10.1016/j.asoc.2017.03.006 Google Scholar
  23. 23.
    Kateriya B, Tiwari R (2016) River water quality analysis and treatment using soft computing technique: a survey. In: 2016 international conference on computer communication and informatics (ICCCI), Coimbatore, India, pp 1–6.  https://doi.org/10.1109/iccci.2016.7479942
  24. 24.
    Mojumder JC et al (2017) The intelligent forecasting of the performances in PV/T collectors based on soft computing method. Renew Sustain Energy Rev.  https://doi.org/10.1016/j.rser.2016.11.225 Google Scholar
  25. 25.
    Hiziroglu AK (2013) Soft computing applications in customer segmentation: state-of-art review and critique. Expert Syst Appl 40:6491–6507.  https://doi.org/10.1016/j.eswa.2013.05.052 Google Scholar
  26. 26.
    Waldchen J, Mader P (2017) Plant species identification using computer vision techniques: a systematic literature review. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-016-9206-z zbMATHGoogle Scholar
  27. 27.
    Balamurugan M et al (2017) Application of soft computing methods for grid connected PV system: a technological and status review. Renew Sustain Energy Rev.  https://doi.org/10.1016/j.rser.2016.11.210 Google Scholar
  28. 28.
    Riomoros I, Guijarro M, Pajares G et al (2010) Automatic image segmentation of greenness in crop fields. In: 2010 international conference of soft computing and pattern recognition, pp 462–467.  https://doi.org/10.1109/socpar.2010.5685936
  29. 29.
    Ko M, Tiwari A, Mehnen J (2010) A review of soft computing applications in supply chain management. Appl Soft Comput 10(3):661–674.  https://doi.org/10.1016/j.asoc.2009.09.004 Google Scholar
  30. 30.
    Dileep G, Singh SN (2017) Application of soft computing techniques for maximum power point tracking of SPV system. Sol Energy 141:182–202.  https://doi.org/10.1016/j.solener.2016.11.034 Google Scholar
  31. 31.
    Saridakis KM, Dentsoras AJ (2008) Soft computing in engineering design—a review. Adv Eng Inform 22:202–221.  https://doi.org/10.1016/j.aei.2007.10.001 Google Scholar
  32. 32.
    Kamiya A, Ovaska SJ, Roy R, Kobayashi S (2005) Fusion of soft computing and hard computing for large-scale plants: a general model. Appl Soft Comput 5(3):265–279.  https://doi.org/10.1016/j.asoc.2004.08.005 Google Scholar
  33. 33.
    Chen Y et al (2016) Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation. IET Image Proc.  https://doi.org/10.1049/iet-ipr.2016.0271 Google Scholar
  34. 34.
    Liu G et al (2015) Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans Image Process 24(11):3990–4000MathSciNetzbMATHGoogle Scholar
  35. 35.
    Chiranjeevi P et al (2014) Neighborhood supported model level fuzzy aggregation for moving object segmentation. IEEE Trans Image Process 23(2):645–657MathSciNetzbMATHGoogle Scholar
  36. 36.
    Zhou H et al (2009) Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J Sel Topics Signal Process 3(1):26–34.  https://doi.org/10.1109/JSTSP.2008.2010631 Google Scholar
  37. 37.
    Xing F et al (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging.  https://doi.org/10.1109/TMI.2015.2481436 Google Scholar
  38. 38.
    Shrivastavaa S, Singh MP (2011) Performance evaluation of feed-forward neural network with soft computing techniques for hand written English alphabets. Appl Soft Comput 11:1156–1182.  https://doi.org/10.1016/j.asoc.2010.02.015 Google Scholar
  39. 39.
    Badura P, Pietka E (2014) Soft computing approach to 3D lung nodule segmentation in CT. Comput Biol Med 53:230–243.  https://doi.org/10.1016/j.compbiomed.2014.08.005 Google Scholar
  40. 40.
    Sulaiman SN, Isa NAM (2010) Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans Consum Electron.  https://doi.org/10.1109/TCE.2010.5681154 Google Scholar
  41. 41.
    Nithila EE, Kumar SS (2016) Segmentation of lung nodule in CT data using active contour model and fuzzy C-mean clustering. Alex Eng J 55:2583–2588Google Scholar
  42. 42.
    Simhachalam B, Ganesan G (2016) Performance comparison of fuzzy and non-fuzzy classification methods. Egypt Inform J 2016(17):183–188.  https://doi.org/10.1016/j.eij.2015.10.004 Google Scholar
  43. 43.
    Yin S, Qian Y, Gong M (2017) Unsupervised hierarchical image segmentation through fuzzy entropy maximization. Pattern Recogn 68:245–269.  https://doi.org/10.1016/j.patcog.2017.03.012 Google Scholar
  44. 44.
    Ji J, Wang K-L (2014) A robust nonlocal fuzzy clustering algorithm with between-cluster separation measure for SAR image segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 7(12):4929–4936.  https://doi.org/10.1109/JSTARS.2014.2308531 Google Scholar
  45. 45.
    Balla-Arabe S, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920.  https://doi.org/10.1109/TSMCB.2012.2218233 Google Scholar
  46. 46.
    Barkana BD, Saricicek I, Yildirim B (2017) Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl Based Syst 118:165–176.  https://doi.org/10.1016/j.knosys.2016.11.022 Google Scholar
  47. 47.
    Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20:4859–4879.  https://doi.org/10.1007/s00500-015-1775-5 Google Scholar
  48. 48.
    Choy SK (2011) Image segmentation using fuzzy region competition and spatial/frequency information. IEEE Trans Image Process 20(6):1473–1484.  https://doi.org/10.1109/TIP.2010.2095023 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Deng W-Q, Li X-M, Gao X, Zhang C-M (2016) A modified fuzzy C-means algorithm for brain MR image segmentation and bias field correction. J Comput Sci Technol 31(3):501–511.  https://doi.org/10.1007/s11390-016-1643-5 MathSciNetGoogle Scholar
  50. 50.
    Bose A, Mali K (2016) Fuzzy-based artificial bee colony optimization for gray image segmentation. Signal Image Video Process 10:109–1096.  https://doi.org/10.1007/s11760-016-0863-z Google Scholar
  51. 51.
    Manikandan T, Bharathi N (2016) Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. J Med Syst 40(7):1–9.  https://doi.org/10.1007/s10916-016-0539-9 Google Scholar
  52. 52.
    Bakhshali MA (2016) Segmentation and enhancement of brain MR images using fuzzy clustering based on information theory. Soft Comput.  https://doi.org/10.1007/s00500-016-2210-2 Google Scholar
  53. 53.
    Shang R et al (2016) A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 9(4):1640–1652.  https://doi.org/10.1109/JSTARS.2016.2516014 Google Scholar
  54. 54.
    Li X, Zhang F, Ouyang X, Khan SU (2016) MapReduce-based fast fuzzy c-means algorithm for large-scale underwater image segmentation. Future Gener Comput Syst 65:90–101.  https://doi.org/10.1016/j.future.2016.03.004 Google Scholar
  55. 55.
    Zhang M et al (2016) Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Appl Soft Comput 48(C):621–637.  https://doi.org/10.1016/j.asoc.2016.07.051 Google Scholar
  56. 56.
    Zhang X et al (2017) An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation. Soft Comput 21:2165–2173.  https://doi.org/10.1007/s00500-015-1920-1 Google Scholar
  57. 57.
    Zhou D, Zhou H (2015) A modified strategy of fuzzy clustering algorithm for image Segmentation. Soft Comput 19:3261–3272.  https://doi.org/10.1007/s00500-014-1481-8 Google Scholar
  58. 58.
    Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752.  https://doi.org/10.1109/42.802752 Google Scholar
  59. 59.
    Sarkara JP, Saha I, Maulik U (2016) Rough possibilistic type-2 fuzzy C-means clustering for MR brain image segmentation. Appl Soft Comput 46:527–536.  https://doi.org/10.1016/j.asoc.2016.01.040 Google Scholar
  60. 60.
    Zhang M, Hall LO, Goldgof DB (2002) A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms. IEEE Trans Syst Man Cybern Part B Cybern 32(5):571–582.  https://doi.org/10.1109/TSMCB.2002.1033177 Google Scholar
  61. 61.
    Chen G-C, Juang C-F (2013) Object detection using color entropies and a fuzzy classifier. IEEE Comput Intell Mag 8(1):33–45.  https://doi.org/10.1109/MCI.2012.2228592 Google Scholar
  62. 62.
    Chen Y et al (2016) An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation. Pattern Recogn 60:778–792.  https://doi.org/10.1016/j.patcog.2016.06.020 Google Scholar
  63. 63.
    Gharieb RR, Gendy G, Abdelfattah A (2017) C-means clustering fuzzified by two membership relative entropy functions approach incorporating local data information for noisy image segmentation. SIViP 11(3):541–548.  https://doi.org/10.1007/s11760-016-0992-4 Google Scholar
  64. 64.
    Ananthi VP, Balasubramaniam P (2016) A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Comput Methods Programs Biomed 134(C):165–177.  https://doi.org/10.1016/j.cmpb.2016.07.002 Google Scholar
  65. 65.
    Hernandez-Matamoros A et al (2016) Facial expression recognition with automatic segmentation of face regions using a fuzzy based classification approach. Knowl-Based Syst 110:1–14.  https://doi.org/10.1016/j.knosys.2016.07.011 Google Scholar
  66. 66.
    Bai X et al (2016) Feature based fuzzy inference system for segmentation of low-contrast infrared ship images. Appl Soft Comput 46(C):128–142.  https://doi.org/10.1016/j.asoc.2016.05.004 Google Scholar
  67. 67.
    Sebari I, He D-C (2013) Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS J Photogramm Remote Sens 79:171–184.  https://doi.org/10.1016/j.isprsjprs.2013.02.006 Google Scholar
  68. 68.
    Ji Z, Xia Y et al (2012) Fuzzy local gaussian mixture model for brain MR image segmentation. IEEE Trans Inf Technol Biomed 16(3):339–347.  https://doi.org/10.1109/TITB.2012.2185852 MathSciNetGoogle Scholar
  69. 69.
    Cao H (2012) Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 20(1):1–8.  https://doi.org/10.1109/TFUZZ.2011.2160025 Google Scholar
  70. 70.
    Priya RMS, Prabu S, Dharun VS (2016) F-SIFT and FUZZY-RVM based efficient multi-temporal image segmentation approach for remote sensing applications. Autom Control Comput Sci 50(3):151–164Google Scholar
  71. 71.
    Vorontsov E et al (2017) Metastatic liver tumour segmentation with a neural network-guided 3D deformable model. Med Biol Eng Comput 55:127–139.  https://doi.org/10.1007/s11517-016-1495-8 Google Scholar
  72. 72.
    Trujillo MCR et al (2017) Segmentation of carbon nanotube images through an artificial neural network. Soft Comput 21:611–625.  https://doi.org/10.1007/s00500-016-2426-1 Google Scholar
  73. 73.
    Liu W et al (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26.  https://doi.org/10.1016/j.neucom.2016.12.038 Google Scholar
  74. 74.
    Chen Y et al (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251.  https://doi.org/10.1109/TGRS.2016.2584107 Google Scholar
  75. 75.
    Ghamisi P et al (2016) A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geosci Remote Sens Lett 13(10):1537–1541.  https://doi.org/10.1109/LGRS.2016.2595108 Google Scholar
  76. 76.
    Liang X et al (2017) Human parsing with contextualized convolutional neural network. IEEE Trans Pattern Anal Mach Intell 39(1):115–127.  https://doi.org/10.1109/TPAMI.2016.2537339 Google Scholar
  77. 77.
    Cheng G et al (2016) Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415.  https://doi.org/10.1109/TGRS.2016.2601622 Google Scholar
  78. 78.
    Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: fine tuning or full training? IEEE Trans Med Imaging 35(5):1299–1312.  https://doi.org/10.1109/TMI.2016.2535302 Google Scholar
  79. 79.
    Py O et al (2016) Plankton classification with deep convolutional neural networks neural networks. In: 2016 IEEE information technology, networking, electronic and automation control conference, pp 132–136.  https://doi.org/10.1109/itnec.2016.7560334
  80. 80.
    Papandreou G et al (2015) Weakly- and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: 2015 IEEE international conference on computer vision (ICCV).  https://doi.org/10.1109/iccv.2015.203
  81. 81.
    Wang L et al (2016) Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study. IEEE Trans Geosci Remote Sens 54(8):4524–4533.  https://doi.org/10.1109/TGRS.2016.2543660 Google Scholar
  82. 82.
    Ding J et al (2016) Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci Remote Sens Lett 13(3):364–368.  https://doi.org/10.1109/LGRS.2015.2513754 Google Scholar
  83. 83.
    Kim Y, Moon T (2016) Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(1):8–12.  https://doi.org/10.1109/LGRS.2015.2491329 Google Scholar
  84. 84.
    Dou Q et al (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 35(5):1182–1195.  https://doi.org/10.1109/TMI.2016.2528129 Google Scholar
  85. 85.
    Liu M et al (2017) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Gr 23(1):91–100.  https://doi.org/10.1109/TVCG.2016.2598831 Google Scholar
  86. 86.
    Kim BK et al (2017) Drone classification using convolutional neural networks with merged doppler images. IEEE Geosci Remote Sens Lett 14(1):38–42.  https://doi.org/10.1109/LGRS.2016.2624820 Google Scholar
  87. 87.
    Li X et al (2016) Deepsaliency: multi-task deep neural network model for salient object detection. IEEE Trans Image Process 25(8):3919–3930.  https://doi.org/10.1109/TIP.2016.2579306 MathSciNetzbMATHGoogle Scholar
  88. 88.
    Sevo I, Avramovic A (2016) Convolutional neural network based automatic object detection on aerial images. IEEE Geosci Remote Sens Lett 13(5):740–744.  https://doi.org/10.1109/LGRS.2016.2542358 Google Scholar
  89. 89.
    Rajchl M et al (2017) DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans Med Imaging 36(2):674–683.  https://doi.org/10.1109/TMI.2016.2621185 Google Scholar
  90. 90.
    Volpi M, Tuia D (2017) Dense semantic labeling of subdecimeter resolution images with convolutional. IEEE Trans Geosci Remote Sens 55(2):881–893.  https://doi.org/10.1109/TGRS.2016.2616585 Google Scholar
  91. 91.
    Maggiori E et al (2017) Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 55(2):645–657.  https://doi.org/10.1109/TGRS.2016.2612821 Google Scholar
  92. 92.
    Konar D et al (2016) A quantum bi-directional self-organizing neural network (QBDSONN) architecture for binary object extraction from a noisy perspective. Appl Soft Comput 46:731–752.  https://doi.org/10.1016/j.asoc.2015.12.040 Google Scholar
  93. 93.
    Chang C-Y (2011) A neural network for thyroid segmentation and volume estimation in CT images. IEEE Comput Intell Mag 6(4):43–55.  https://doi.org/10.1109/MCI.2011.942756 Google Scholar
  94. 94.
    Taravat A et al (2014) Fully automatic dark-spot detection from SAR imagery with the combination of nonadaptive weibull multiplicative model and pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 52(5):2427–2435.  https://doi.org/10.1109/TGRS.2013.2261076 Google Scholar
  95. 95.
    Chen Y et al (2015) Region-based object recognition by color segmentation using a simplified PCNN. IEEE Trans Neural Netw Learn Syst 26(8):1682–1697.  https://doi.org/10.1109/TNNLS.2014.2351418 MathSciNetGoogle Scholar
  96. 96.
    Karvonen JA et al (2004) Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 42(7):1566–1574.  https://doi.org/10.1109/TGRS.2004.828179 Google Scholar
  97. 97.
    Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598.  https://doi.org/10.1109/72.761716 Google Scholar
  98. 98.
    Demirhan A et al (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 19(4):1451–1458.  https://doi.org/10.1109/JBHI.2014.2360515 Google Scholar
  99. 99.
    Song T et al (2007) A modified probabilistic neural network for partial volume segmentation in brain MR image. IEEE Trans Neural Netw 18(5):1424–1432.  https://doi.org/10.1109/TNN.2007.891635 Google Scholar
  100. 100.
    Abdel-Khalek S et al (2017) A two-dimensional image segmentation method based on genetic algorithm and entropy. Optik 131:414–422.  https://doi.org/10.1016/j.ijleo.2016.11.039 Google Scholar
  101. 101.
    Ghosh P et al (2016) Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing 195:181–194.  https://doi.org/10.1016/j.neucom.2015.09.123 Google Scholar
  102. 102.
    Sheta A et al (2012) Genetic algorithms: a tool for image segmentation. In: 2012 international conference on multimedia computing and systems, pp 84–90.  https://doi.org/10.1109/icmcs.2012.6320144
  103. 103.
    Hung C-L, Yuan-Huai W (2016) Parallel genetic-based algorithm on multiple embedded graphic processing units for brain magnetic resonance imaging segmentation. Comput Electr Eng.  https://doi.org/10.1016/j.compeleceng.2016.09.028 Google Scholar
  104. 104.
    Xie F, Bovik AC (2013) Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recogn 46:1012–1019.  https://doi.org/10.1016/j.patcog.2012.08.012 Google Scholar
  105. 105.
    Mylonas SK et al (2015) Classification of remotely sensed images using the genesis fuzzy segmentation algorithm. IEEE Trans Geosci Remote Sens 53(10):5352–5376.  https://doi.org/10.1109/TGRS.2015.2421640 Google Scholar
  106. 106.
    Wang F et al (2014) An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding. IEEE ASME Trans Mechatron 19(3):916–923.  https://doi.org/10.1109/TMECH.2013.2260555 Google Scholar
  107. 107.
    Namburu A, Samay SK, Edara SR (2017) Soft fuzzy rough set-based MR brain image segmentation. Appl Soft Comput 54(C):456–466.  https://doi.org/10.1016/j.asoc.2016.08.020 Google Scholar
  108. 108.
    Vishnuvarthanan G et al (2016) An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 38:190–212.  https://doi.org/10.1016/j.asoc.2015.09.016 Google Scholar
  109. 109.
    Mukhopadhyay A, Maulik U (2011) A multiobjective approach to MR brain image segmentation. Appl Soft Comput 11:872–880.  https://doi.org/10.1016/j.asoc.2010.01.007 Google Scholar
  110. 110.
    Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9:1156–1169.  https://doi.org/10.1016/j.asoc.2009.03.001 Google Scholar
  111. 111.
    Kannan SR (2008) A new segmentation system for brain MR images based on fuzzy techniques. Appl Soft Comput 8:1599–1606.  https://doi.org/10.1016/j.asoc.2007.10.025 Google Scholar
  112. 112.
    Hata Y et al (2000) Automated segmentation of human brain MR images aided by fuzzy information granulation and fuzzy inference. IEEE Trans Syst Man Cybern Part C Appl Rev 30(3):381–395.  https://doi.org/10.1109/5326.885120 Google Scholar
  113. 113.
    Baazaouia A, Barhoumi W, Ahmed A, Zagrouba E (2017) Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing. IRBM 38:98–108.  https://doi.org/10.1016/j.irbm.2017.02.003 Google Scholar
  114. 114.
    Cordeiro FR et al (2016) An adaptive semi-supervised Fuzzy GrowCut algorithm to segment masses of regions of interest of mammographic images. Appl Soft Comput 46:613–628.  https://doi.org/10.1016/j.asoc.2015.11.040 Google Scholar
  115. 115.
    Rezaee K, Haddadnia J, Tashk A (2017) Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl Soft Comput 52:937–951.  https://doi.org/10.1016/j.asoc.2016.09.033 Google Scholar
  116. 116.
    Chaira T (2010) Intuitionistic fuzzy segmentation of medical images. IEEE Trans Biomed Eng 57(6):1430–1436.  https://doi.org/10.1109/TBME.2010.2041000 Google Scholar
  117. 117.
    Leung S-H, Wang S-L, Lau W-H (2004) Lip image segmentation using fuzzy clustering incorporating an elliptic shape function. IEEE Trans Image Process 13(1):51–62.  https://doi.org/10.1109/TIP.2003.818116 Google Scholar
  118. 118.
    Javed U, Raiz MM, Ghafoor A, Cheema TA (2016) SAR image segmentation based on active contours with fuzzy logic. IEEE Trans Aerosp Electron Syst 52(1):181–188.  https://doi.org/10.1109/TAES.2015.120817 Google Scholar
  119. 119.
    Li L et al (2016) Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation. IEEE Access 4:6438–6450.  https://doi.org/10.1109/ACCESS.2016.2613940 Google Scholar
  120. 120.
    Mondal A, Ghosh S, Ghosh A (2016) Robust global and local fuzzy energy based active contour for image segmentation. Appl Soft Comput 47(C):191–215.  https://doi.org/10.1016/j.asoc.2016.05.026 Google Scholar
  121. 121.
    Zhao F et al (2015) A multi objective spatial fuzzy clustering algorithm for image segmentation. Appl Soft Comput 30:48–57.  https://doi.org/10.1016/j.asoc.2015.01.039 Google Scholar
  122. 122.
    Maj P, Roy S (2015) Rough fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl Soft Comput 30:705–721.  https://doi.org/10.1016/j.asoc.2015.01.049 Google Scholar
  123. 123.
    Caponetti L et al (2008) Document page segmentation using neuro-fuzzy approach. Appl Soft Comput 8:118–126.  https://doi.org/10.1016/j.asoc.2006.11.008 Google Scholar
  124. 124.
    Chi Z, Yan H (1993) Map image segmentation based on thresholding and fuzzy rules. Electron Lett 29(21):1841–1843.  https://doi.org/10.1049/el:19931225 Google Scholar
  125. 125.
    Herrera PJ et al (2011) A segmentation method using Otsu and fuzzy k-means for stereovision matching in hemispherical images from forest environments. Appl Soft Comput 11:4738–4747.  https://doi.org/10.1016/j.asoc.2011.07.010 Google Scholar
  126. 126.
    Pednekar AS, Kakadiaris IA (2006) Image segmentation based on fuzzy connectedness using dynamic weights. IEEE Trans Image Process 15(6):1555–1562.  https://doi.org/10.1109/TIP.2006.871165 Google Scholar
  127. 127.
    Feng C, Zhao D, Huang M (2016) Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization. J Vis Commun Image Represent 38(C):517–529.  https://doi.org/10.1016/j.jvcir.2016.03.027 Google Scholar
  128. 128.
    Aparajeeta J, Nanda PK, Das N (2016) Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image. Appl Soft Comput 41(C):104–119.  https://doi.org/10.1016/j.asoc.2015.12.003 Google Scholar
  129. 129.
    Verma H et al (2016) An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput 46:543–557.  https://doi.org/10.1016/j.asoc.2015.12.022 Google Scholar
  130. 130.
    Adhikari SK et al (2015) Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Appl Soft Comput 34:758–769.  https://doi.org/10.1016/j.asoc.2015.05.038 Google Scholar
  131. 131.
    Huang C-W et al (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19(459–470):2105.  https://doi.org/10.1007/s00500-014-1264-2 Google Scholar
  132. 132.
    Ain Q et al (2014) Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification for brain tumor. Appl Soft Comput 21:330–340.  https://doi.org/10.1016/j.asoc.2014.03.019 Google Scholar
  133. 133.
    Yang Z (2009) Robust fuzzy clustering-based image segmentation. Appl Soft Comput 9:80–84.  https://doi.org/10.1016/j.asoc.2008.03.009 Google Scholar
  134. 134.
    Ji Z et al (2012) Fuzzy c-means clustering with weighted image patch for image segmentation. Appl Soft Comput 12:1659–1667.  https://doi.org/10.1016/j.asoc.2012.02.010 Google Scholar
  135. 135.
    Chen S, Zhang D (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern Part B Cybern 34(4):1907–1916.  https://doi.org/10.1109/TSMCB.2004.831165 Google Scholar
  136. 136.
    Shen S et al (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 9(3):459–467.  https://doi.org/10.1109/TITB.2005.847500 Google Scholar
  137. 137.
    Rezaei Z et al (2017) Automatic plaque segmentation based on hybrid fuzzy clustering and k nearest neighborhood using virtual histology intravascular ultrasound images. Appl Soft Comput 53:380–395.  https://doi.org/10.1016/j.asoc.2016.12.048 Google Scholar
  138. 138.
    Tripathy BK, Mittal D (2016) Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis. Appl Soft Comput 46(C):886–923.  https://doi.org/10.1016/j.asoc.2016.01.045 Google Scholar
  139. 139.
    Tan KS et al (2013) Novel initialization scheme for fuzzy C-means algorithm on color image segmentation. Appl Soft Comput 13:1832–1852.  https://doi.org/10.1016/j.asoc.2012.12.022 Google Scholar
  140. 140.
    Tan KS et al (2013) Color image segmentation using adaptive unsupervised clustering approach. Appl Soft Comput 13:2017–2036.  https://doi.org/10.1016/j.asoc.2012.11.038 Google Scholar
  141. 141.
    Zhou X-C et al (2008) New two-dimensional fuzzy C-means clustering algorithm for image segmentation. J Cent South Univ Technol 15:882–887.  https://doi.org/10.1007/s11771-008-0161-1 Google Scholar
  142. 142.
    Sowmya B, Rani BS (2011) Colour image segmentation using fuzzy clustering techniques and competitive neural network. Appl Soft Comput 11:3170–3178.  https://doi.org/10.1016/j.asoc.2010.12.019 Google Scholar
  143. 143.
    Hassanien AE et al (2014) MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl Soft Comput 14:62–71.  https://doi.org/10.1016/j.asoc.2013.08.011 Google Scholar
  144. 144.
    Ortiz A et al (2013) Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 13:2668–2682.  https://doi.org/10.1016/j.asoc.2012.11.020 Google Scholar
  145. 145.
    Alirezaie J et al (1998) Automatic segmentation of cerebral MR images using artificial neural networks. IEEE Trans Nucl Sci 45(4):2174–2182.  https://doi.org/10.1109/23.708336 Google Scholar
  146. 146.
    Xie F et al (2017) Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging 36(3):849–858.  https://doi.org/10.1109/TMI.2016.2633551 Google Scholar
  147. 147.
    Franklin W, Rajan SE (2014) Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Appl Soft Comput 22:94–100.  https://doi.org/10.1016/j.asoc.2014.04.024 Google Scholar
  148. 148.
    Veredas F et al (2010) Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE Trans Med Imaging 29(2):410–427.  https://doi.org/10.1109/TMI.2009.2033595 Google Scholar
  149. 149.
    Wang F, Wang F (2014) Void detection in TSVs with X-ray image multithreshold segmentation and artificial neural networks. IEEE Trans Comp Packag Manuf Technol 4(7):1245–1250.  https://doi.org/10.1109/TCPMT.2014.2322907 Google Scholar
  150. 150.
    Turaga SC et al (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22:511–538zbMATHGoogle Scholar
  151. 151.
    Cheng K-S et al (1996) The application of competitive hopfield neural network to medical image segmentation. IEEE Trans Med Imaging 15(4):560–567.  https://doi.org/10.1109/42.511759 Google Scholar
  152. 152.
    Chen C-T et al (1991) Medical image segmentation by a constraint satisfaction neural network. IEEE Trans Nucl Sci 38(2):678–686.  https://doi.org/10.1109/23.289373 Google Scholar
  153. 153.
    Singha S et al (2013) Satellite oil spill detection using artificial neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2355–2363.  https://doi.org/10.1109/JSTARS.2013.2251864 MathSciNetGoogle Scholar
  154. 154.
    Rizvi IA, Mohan BK (2011) Object-based image analysis of high-resolution satellite images using modified cloud basis function neural network and probabilistic relaxation labeling process. IEEE Trans Geosci Remote Sens 49(12):4815–4820.  https://doi.org/10.1109/TGRS.2011.2171695 Google Scholar
  155. 155.
    Sziranyi T, Zerubia J (1997) Markov random field image segmentation using cellular neural network. IEEE Trans Circuits Syst I Fundam Theory Appl 44(1):86–89.  https://doi.org/10.1109/81.558448 Google Scholar
  156. 156.
    Baraldi A, Parmiggiani F (1995) A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering. IEEE Trans Geosci Remote Sens 33(2):305–316.  https://doi.org/10.1109/36.377930 Google Scholar
  157. 157.
    Arumugadevi S, Seenivasagam V (2016) Color image segmentation using feedforward neural networks with FCM. Int J Autom Comput 13(5):491–500.  https://doi.org/10.1007/s11633-016-0975-5 Google Scholar
  158. 158.
    Helmy AK, El-Taweel GS (2016) Image segmentation scheme based on SOM–PCNN in frequency domain. Appl Soft Comput 40:405–415.  https://doi.org/10.1016/j.asoc.2015.11.042 Google Scholar
  159. 159.
    De S et al (2012) Color image segmentation using parallel OptiMUSIG activation function. Appl Soft Comput 12:3228–3236.  https://doi.org/10.1016/j.asoc.2012.05.011 Google Scholar
  160. 160.
    Meftah B et al (2010) Segmentation and edge detection based on spiking neural network model. Neural Process Lett 32:131–146.  https://doi.org/10.1007/s11063-010-9149-6 Google Scholar
  161. 161.
    Bhattacharyya S et al (2010) Multilevel image segmentation with adaptive image context based thresholding. Appl Soft Comput 11:946–962.  https://doi.org/10.1016/j.asoc.2010.01.015 Google Scholar
  162. 162.
    Boskovitz V, Guterman H (2002) An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Trans Fuzzy Syst 10(2):247–262.  https://doi.org/10.1109/91.995125 Google Scholar
  163. 163.
    Fu H, Chi Z (2006) Combined thresholding and neural network approach for vein pattern extraction from leaf images. IEEE Proc Vis Image Signal Process 153(6):881–892.  https://doi.org/10.1049/ip-vis:20060061 Google Scholar
  164. 164.
    Chen X et al (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11(10):1797–1801.  https://doi.org/10.1109/LGRS.2014.2309695 Google Scholar
  165. 165.
    Lin J-S et al (1996) A fuzzy hopfield neural network for medical image segmentation. IEEE Trans Nucl Sci 43(4):2389–2398.  https://doi.org/10.1109/23.531787 MathSciNetGoogle Scholar
  166. 166.
    Pereira S et al (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251.  https://doi.org/10.1109/TMI.2016.2538465 Google Scholar
  167. 167.
    Moeskops P et al (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261.  https://doi.org/10.1109/TMI.2016.2548501 Google Scholar
  168. 168.
    Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31.  https://doi.org/10.1016/j.media.2016.05.004 Google Scholar
  169. 169.
    Lekadir K et al (2017) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform 21(1):48–55.  https://doi.org/10.1109/JBHI.2016.2631401 Google Scholar
  170. 170.
    Roth HR et al (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI 2015: medical image computing and computer-assisted intervention, pp. 556–564.  https://doi.org/10.1007/978-3-319-24553-9_68
  171. 171.
    Xu Y et al (2017) Gland instance segmentation using deep multichannel neural networks. IEEE Trans Biomed Eng.  https://doi.org/10.1109/TBME.2017.2686418 Google Scholar
  172. 172.
    Yuan Y et al (2017) Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans Med Imaging.  https://doi.org/10.1109/TMI.2017.2695227 Google Scholar
  173. 173.
    Zhang S et al (2016) Transferred deep convolutional neural network features for extensive facial landmark localization. IEEE Signal Process Lett 23(4):478–482.  https://doi.org/10.1109/LSP.2016.2533721 Google Scholar
  174. 174.
    Kumar A et al (2017) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31–40.  https://doi.org/10.1109/JBHI.2016.2635663 Google Scholar
  175. 175.
    van Grinsven MJJP et al (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284.  https://doi.org/10.1109/TMI.2016.2526689 Google Scholar
  176. 176.
    Lawrence S et al (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113.  https://doi.org/10.1109/72.554195 Google Scholar
  177. 177.
    Kiranyaz S et al (2016) Real-time patient-specific ECG classification by 1D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675.  https://doi.org/10.1109/TBME.2015.2468589 Google Scholar
  178. 178.
    Nogueira RF et al (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213.  https://doi.org/10.1109/TIFS.2016.2520880 Google Scholar
  179. 179.
    Brosch T, Tam R (2015) Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images. Neural Comput 27:211–227.  https://doi.org/10.1162/NECO_a_00682 zbMATHGoogle Scholar
  180. 180.
    Badrinarayanan V et al (2017) SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans Pattern Anal Mach Intell.  https://doi.org/10.1109/TPAMI.2016.2644615 Google Scholar
  181. 181.
    Cheng D et al (2017) SeNet: structured edge network for sea-land segmentation. IEEE Geosci Remote Sens Lett 14(2):247–251.  https://doi.org/10.1109/LGRS.2016.2637439 Google Scholar
  182. 182.
    Zhou Yu et al (2016) Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(12):1935–1939.  https://doi.org/10.1109/LGRS.2016.2618840 Google Scholar
  183. 183.
    Zhang F et al (2016) Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Trans Geosci Remote Sens 54(9):5553–5563.  https://doi.org/10.1109/TGRS.2016.2569141 Google Scholar
  184. 184.
    Dong C et al (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307.  https://doi.org/10.1109/TPAMI.2015.2439281 Google Scholar
  185. 185.
    Yan C et al (2015) Driving posture recognition by convolutional neural networks. IET Comput Vision 10(2):103–114.  https://doi.org/10.1049/iet-cvi.2015.0175 Google Scholar
  186. 186.
    Wang P et al (2016) Action recognition from depth maps using deep convolutional neural networks. IEEE Trans Hum Mach Syst 46(4):498–509.  https://doi.org/10.1109/THMS.2015.2504550 Google Scholar
  187. 187.
    Dong Z et al (2015) Vehicle type classification using a semisupervised convolutional neural network. IEEE Trans Intell Transp Syst 16(4):2247–2256.  https://doi.org/10.1109/TITS.2015.2402438 Google Scholar
  188. 188.
    Liu F et al (2016) Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans Pattern Anal Mach Intell 38(10):2024–2039.  https://doi.org/10.1109/TPAMI.2015.2505283 Google Scholar
  189. 189.
    Wu D et al (2016) Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Trans Pattern Anal Mach Intell 38(8):1583–1597.  https://doi.org/10.1109/TPAMI.2016.2537340 Google Scholar
  190. 190.
    Dosovitskiy A et al (2017) Learning to generate chairs, tables and cars with convolutional networks. IEEE Trans Pattern Anal Mach Intell 39(4):692–705.  https://doi.org/10.1109/TPAMI.2016.2567384 Google Scholar
  191. 191.
    Fakhry A et al (2017) Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans Med Imaging 36(2):447–456.  https://doi.org/10.1109/TMI.2016.2613019 Google Scholar
  192. 192.
    Neubauer C (1998) Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw 9(4):685–696.  https://doi.org/10.1109/72.701181 Google Scholar
  193. 193.
    Anthimopoulos M et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216.  https://doi.org/10.1109/TMI.2016.2535865 Google Scholar
  194. 194.
    Tang Y, Xiangqian W (2017) Scene text detection and segmentation based on cascaded convolution neural networks. IEEE Trans Image Process 26(3):1509–1520.  https://doi.org/10.1109/TIP.2017.2656474 Google Scholar
  195. 195.
    Chen SW et al (2017) Counting apples and oranges with deep learning: a data driven approach. IEEE Robot Autom Lett 2(2):781–788.  https://doi.org/10.1109/LRA.2017.2651944 Google Scholar
  196. 196.
    Tang J et al (2015) Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53(3):1174–1185.  https://doi.org/10.1109/TGRS.2014.2335751 Google Scholar
  197. 197.
    De S et al (2016) Automatic magnetic resonance image segmentation by fuzzy intercluster hostility index based genetic algorithm: an application. Appl Soft Comput 47:669–683.  https://doi.org/10.1016/j.asoc.2016.05.042 Google Scholar
  198. 198.
    McIntosh C, Hamarneh G (2012) Medial-based deformable models in nonconvex shape-spaces for medical image segmentation. IEEE Trans Med Imaging 31(1):33–50.  https://doi.org/10.1109/TMI.2011.2162528 Google Scholar
  199. 199.
    Tian GJ et al (2011) Hybrid genetic and variational expectation-maximization algorithm for gaussian-mixture-model-based brain mr image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380.  https://doi.org/10.1109/TITB.2011.2106135 Google Scholar
  200. 200.
    Angelie E et al (2003) Automatic tuning of left ventricular segmentation of MR images using genetic algorithms. Int Congr Ser 1256:1102–1107.  https://doi.org/10.1016/S0531-5131(03)00351-0 Google Scholar
  201. 201.
    Yeh J-Y, Fu JC (2008) A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI. Expert Syst Appl 34:1285–1295.  https://doi.org/10.1016/j.eswa.2006.12.012 Google Scholar
  202. 202.
    Manikandan S et al (2013) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568.  https://doi.org/10.1016/j.measurement.2013.09.031 Google Scholar
  203. 203.
    Fan Y et al (2002) Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Trans Med Imaging 21(8):904–909.  https://doi.org/10.1109/TMI.2002.803126 Google Scholar
  204. 204.
    Janc K et al (2013) Genetic algorithms as a useful tool for trabecular and cortical bone segmentation. Comput Methods Programs Biomed 111:72–83.  https://doi.org/10.1016/j.cmpb.2013.03.012 Google Scholar
  205. 205.
    Rogai F et al (2016) Metaheuristics for specialization of a segmentation algorithm for ultrasound images. IEEE Trans Evolut Comput 20(5):730–741.  https://doi.org/10.1109/TEVC.2016.2515660 Google Scholar
  206. 206.
    Pereira DC et al (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Programs Biomed 114:88–101.  https://doi.org/10.1016/j.cmpb.2014.01.014 Google Scholar
  207. 207.
    Nagarajan G et al (2016) Hybrid genetic algorithm for medical image feature extraction and selection. In: International conference on computational modeling and security (CMS 2016), vol 85, pp 455–462.  https://doi.org/10.1016/j.procs.2016.05.192
  208. 208.
    Ye F (2016) Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis. Multimed Tools Appl.  https://doi.org/10.1007/s11042-016-4233-1 Google Scholar
  209. 209.
    Dokur Z, Olmez T (2008) Tissue segmentation in ultrasound images by using genetic algorithms. Expert Syst Appl 34:2739–2746.  https://doi.org/10.1016/j.eswa.2007.05.002 Google Scholar
  210. 210.
    Saha S, Bandyopadhyay S (2010) Application of a multiseed-based clustering technique for automatic satellite image segmentation. IEEE Geosci Remote Sens Lett 7(2):306–308.  https://doi.org/10.1109/LGRS.2009.2034033 Google Scholar
  211. 211.
    Awad M et al (2007) Multicomponent image segmentation using a genetic algorithm and artificial neural network. IEEE Geosci Remote Sens Lett 4(4):571–575.  https://doi.org/10.1109/LGRS.2007.903064 Google Scholar
  212. 212.
    Jeon B-K et al (2002) Road detection in spaceborne SAR images using a genetic algorithm. IEEE Trans Geosci Remote Sens 40(1):22–29.  https://doi.org/10.1109/36.981346 Google Scholar
  213. 213.
    Izadi M et al (2017) A new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from quickbird satellite images. Remote Sens, J Indian Soc.  https://doi.org/10.1007/s12524-017-0660-3 Google Scholar
  214. 214.
    Singh A, Singh KK (2017) Satellite image classification using genetic algorithm trained radial basis function neural network, application to the detection of flooded areas. J Vis Commun Image Represent 42:173–182.  https://doi.org/10.1016/j.jvcir.2016.11.017 Google Scholar
  215. 215.
    Mylonas SK et al (2016) A local search-based genesis algorithm for the segmentation and classification of remote-sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens 9(4):1470–1492.  https://doi.org/10.1109/JSTARS.2016.2518403 Google Scholar
  216. 216.
    Ishak AB (2016) A two-dimensional multilevel thresholding method for image segmentation. Appl Soft Comput 52:306–322.  https://doi.org/10.1016/j.asoc.2016.10.034 Google Scholar
  217. 217.
    Khan A, Jaffar MA (2015) Genetic algorithm and Self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310.  https://doi.org/10.1016/j.asoc.2015.03.029 Google Scholar
  218. 218.
    Abbasgholipour M et al (2014) Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert Syst Appl 38:3671–3678.  https://doi.org/10.1016/j.eswa.2010.09.023 Google Scholar
  219. 219.
    Hammouche K et al (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175.  https://doi.org/10.1016/j.cviu.2007.09.001 Google Scholar
  220. 220.
    Melkemi KE et al (2006) A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics. Pattern Recogn Lett 27:1230–1238.  https://doi.org/10.1016/j.patrec.2005.07.021 Google Scholar
  221. 221.
    Wei H, Tang X-s (2015) A genetic-algorithm-based explicit description of object contour and its ability to facilitate recognition. IEEE Trans Cybern 45(11):2558–2571.  https://doi.org/10.1109/TCYB.2014.2376939 Google Scholar
  222. 222.
    Khan A et al (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. SIViP 8(7):1233–1243.  https://doi.org/10.1007/s11760-012-0347-8 Google Scholar
  223. 223.
    Andrey P (1999) Selectionist relaxation: genetic algorithms applied to image segmentation. Image Vis Comput 17(3–4):175–187.  https://doi.org/10.1016/S0262-8856(98)00095-X Google Scholar
  224. 224.
    Kim HJ et al (1988) MRF model based image segmentation using hierarchical distributed genetic algorithm. Electron Lett 34(25):2394–2395.  https://doi.org/10.1049/el:19981674 Google Scholar
  225. 225.
    Song A, Ciesielski V (2008) Texture segmentation by genetic programming 2008 by the Massachusetts Institute of Technology. Evol Comput 16(4):461–481.  https://doi.org/10.1162/evco.2008.16.4.461 Google Scholar
  226. 226.
    Andrey P, Tarroux P (1994) Unsupervised image segmentation using a distributed genetic algorithm. Pattern Recogn 27(5):659–673.  https://doi.org/10.1016/0031-3203(94)90045-0 Google Scholar
  227. 227.
    Awad M et al (2009) Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means. IET Image Proc 3(2):52–62.  https://doi.org/10.1049/iet-ipr.2007.0213 Google Scholar
  228. 228.
    Gotardo PFU et al (2004) Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm. IEEE Trans Syst Man Cybern Part B Cybern 34(6):2303–2316.  https://doi.org/10.1109/TSMCB.2004.835082 Google Scholar
  229. 229.
    Mylonas SK et al (2013) GeneSIS: a GA-based fuzzy segmentation algorithm for remote sensing images. Knowl-Based Syst 54:86–102.  https://doi.org/10.1016/j.knosys.2013.07.018 Google Scholar
  230. 230.
    Chinnasamy S (2014) Performance improvement of fuzzy-based algorithms for medical image retrieval. IET Image Process 8(6):319–326.  https://doi.org/10.1049/iet-ipr.2012.0510 Google Scholar
  231. 231.
    Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173.  https://doi.org/10.1109/TITB.2008.2007301 Google Scholar
  232. 232.
    Tohka J et al (2007) Genetic algorithms for finite mixture model based voxel classification in neuroimaging. IEEE Trans Med Imaging 26(5):696–711.  https://doi.org/10.1109/TMI.2007.895453 Google Scholar
  233. 233.
    Li C-T, Chiao R (2003) Multiresolution genetic clustering algorithm for texture segmentation. Image Vis Comput 21:955–966.  https://doi.org/10.1016/S0262-8856(03)00120-3 Google Scholar
  234. 234.
    Tseng D-C, Lai C-C (1999) A genetic algorithm for MRF-based segmentation of multi-spectral textured images. Pattern Recogn Lett 20(14):1499–1510.  https://doi.org/10.1016/S0167-8655(99)00117-8 Google Scholar
  235. 235.
    Saha R, Bajger M, Lee G (2016) Spatial shape constrained fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images. In: 2016 international conference on digital image computing: techniques and applications (DICTA), pp 1–8.  https://doi.org/10.1109/dicta.2016.7797086
  236. 236.
    Kumar SVA et al (2016) A picture fuzzy clustering approach for brain tumor segmentation. In: 2016 second international conference on cognitive computing and information processing (CCIP).  https://doi.org/10.1109/ccip.2016.7802852
  237. 237.
    Al-Dmour H, Al-Ani A (2016) MR brain image segmentation based on unsupervised and semi-supervised fuzzy clustering methods. In: 2016 international conference on digital image computing: techniques and applications (DICTA), pp 1–7.  https://doi.org/10.1109/dicta.2016.7797066
  238. 238.
    Pereira S et al (2017) On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese meeting on bioengineering (ENBENG), pp 1–4.  https://doi.org/10.1109/enbeng.2017.7889452
  239. 239.
    Wang C et al (2016) On semantic image segmentation using deep convolutional neural network with shortcuts and easy class extension. In: 2016 sixth international conference on image processing theory, tools and applications (IPTA), pp 1–6.  https://doi.org/10.1109/ipta.2016.7821005
  240. 240.
    Gobikrishnan M, Rajalakshmi T, Snekhalatha U (2016) Diagnosis of rheumatoid arthritis in knee using fuzzy C means segmentation technique. In: International conference on communication and signal processing, pp 430–433.  https://doi.org/10.1109/iccsp.2016.7754172
  241. 241.
    Xu M, Guo M, Shang L, Jia X (2016) Multi-value image segmentation based on FCM algorithm and graph cut theory. In: 2016 IEEE international conference on fuzzy systems (FUZZ), pp 1333–1340.  https://doi.org/10.1109/fuzz-ieee.2016.7737844
  242. 242.
    Abedin MdZ et al (2016) Traffic sign recognition using hybrid features descriptor and artificial neural network classifier. In: 19th international conference on computer and information technology, Dec 2016.  https://doi.org/10.1109/iccitechn.2016.7860241
  243. 243.
    Yamamoto Y et al (2016) An efficient classification method for knee MR image segmentation. In: 2016 12th international conference on signal-image technology and internet-based systems, pp 36–45.  https://doi.org/10.1109/sitis.2016.15
  244. 244.
    Roy K et al (2015) Multibiometric system using fuzzy level set, and genetic and evolutionary feature extraction. IET Biom 4(3):151–161.  https://doi.org/10.1049/iet-bmt.2014.0064 Google Scholar
  245. 245.
    Khan ZF et al (2017) Automated segmentation of lung images using textural echo state neural networks. In: 2017 international conference on informatics, health and technology (ICIHT).  https://doi.org/10.1109/iciht.2017.7899012
  246. 246.
    Zangeneh D, Yazdi M (2016) Automatic segmentation of multiple sclerosis lesions in brain MRI using constrained GMM and genetic algorithm. In: 2016 24th Iranian conference on electrical engineering (ICEE), pp 832–837.  https://doi.org/10.1109/iraniancee.2016.7585635
  247. 247.
    Kaur A, Kaur P (2016) An integrated approach for diabetic retinopathy exudate segmentation by using genetic algorithm and switching median filter. In: 2016 international conference on image, vision and computing, pp 119–123.  https://doi.org/10.1109/icivc.2016.7571284
  248. 248.
    Mistry VH, Makwana RM (2016) Computationally efficient vanishing point detection algorithm based road segmentation in road images. In: 2016 IEEE international conference on advances in electronics, communication and computer technology (ICAECCT)Google Scholar
  249. 249.
    Kampffmeyer M et al (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: 2016 IEEE conference on computer vision and pattern recognition workshops, pp 680–688.  https://doi.org/10.1109/cvprw.2016.90
  250. 250.
    Benalcazar ME et al (2014) Automatic design of aperture filters using neural networks applied to ocular image segmentation. In: 2014 22nd European signal processing conference (EUSIPCO), pp 2195–2199Google Scholar
  251. 251.
    Lee G-G et al (2017) Traffic light recognition using deep neural networks. In: 2017 IEEE international conference on consumer electronics (ICCE), pp 277–278.  https://doi.org/10.1109/icce.2017.7889317
  252. 252.
    Takeki A et al (2016) Detection of small birds in large images by combining a deep detector with semantic segmentation. In: 2016 IEEE international conference on image processing (ICIP), pp 3977–3981.  https://doi.org/10.1109/icip.2016.7533106
  253. 253.
    Kumar S, Pant M, Kumar M, Dutt A (2015) Colour image segmentation with histogram and homogeneity histogram difference using evolutionary algorithms. Int J Mach Learn Cybernet.  https://doi.org/10.1007/s13042-015-0360-7 Google Scholar
  254. 254.
    Singh V, Gupta S, Saini S (2015) A methodological survey of image segmentation using soft computing techniques. In: 2015 international conference on advances in computer engineering and applications (ICACEA), pp 419–422.  https://doi.org/10.1109/icacea.2015.7164741
  255. 255.
    Zhang J, Chen W-N, Zhan Z-H et al (2012) A survey on algorithm adaptation in evolutionary computation. Front Electr Electron Eng 7(1):16–31.  https://doi.org/10.1007/s11460-012-0192-0 Google Scholar
  256. 256.
    Li G (2016) Magnetic resonance image segmentation algorithm based on fuzzy clustering. In: 2016 eighth international conference on measuring technology and mechatronics automation, pp 379–382.  https://doi.org/10.1109/icmtma.2016.97
  257. 257.
    Kuruvilla J, Sukumaran D, Sankar A, Joy SP (2016) A review on image processing and image segmentation. In: 2016 international conference on data mining and advanced computing (SAPIENCE), pp 198–203.  https://doi.org/10.1109/sapience.2016.7684170
  258. 258.
    Bedruz RA et al (2016) Fuzzy logic based vehicular plate character recognition system using image segmentation and scale-invariant feature transform. In: 2016 IEEE region 10 conference (TENCON), pp 676–681.  https://doi.org/10.1109/tencon.2016.7848088
  259. 259.
    Zhu W (2016) Segmentation algorithm for MRI images using global entropy minimization. In: IEEE international conference on signal and image processing (ICSIP), pp 1–5.  https://doi.org/10.1109/siprocess.2016.7888212
  260. 260.
    Parvathi P, Rajeswari R (2016) A hybrid FCM-ALO based technique for image segmentation. In: 2016 IEEE international conference on advances in computer applications (ICACA), pp 342–345.  https://doi.org/10.1109/icaca.2016.7887978
  261. 261.
    Tewari P, Surbhi P (2016) Evaluation of some recent image segmentation method’s. In: 2016 international conference on computing for sustainable global development (INDIACom), pp 3741–3747Google Scholar
  262. 262.
    Naz S, Majeed H, Irshad H (2010) Image segmentation using fuzzy clustering: a survey. In: 2010 6th international conference on emerging technologies (ICET), pp 181–186.  https://doi.org/10.1109/icet.2010.5638492
  263. 263.
    Vapenik R et al (2016) Human face detection in still image using Multilayer perceptron solution based on Neuroph framework. In: 2016 international conference on emerging elearning technologies and applications (ICETA), pp 365–369.  https://doi.org/10.1109/iceta.2016.7802049
  264. 264.
    Swietojanski P et al (2014) Convolutional neural networks for distant speech recognition. IEEE Signal Process Lett 21(9):1120–1124.  https://doi.org/10.1109/LSP.2014.2325781 Google Scholar
  265. 265.
    Duran-Rosal AM et al (2017) Identification of extreme wave heights with an evolutionary algorithm in combination with a likelihood-based segmentation. Prog Artif Intell 6:59–66.  https://doi.org/10.1007/s13748-016-0105-1 Google Scholar
  266. 266.
    Uy ACP et al (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. In: 2016 IEEE region 10 conference (TENCON)—proceedings of the international conference, pp 2094–2099.  https://doi.org/10.1109/tencon.2016.7848395
  267. 267.
    Saqui D et al (2016) Methodology for band selection of hyperspectral images using genetic algorithms and gaussian maximum likelihood classifier. In: 2016 international conference on computational science and computational intelligence, pp 733–738.  https://doi.org/10.1109/csci.2016.0143
  268. 268.
    Hiwa S et al (2016) Region-of-interest extraction of MRI data using genetic algorithms. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–7.  https://doi.org/10.1109/ssci.2016.7850135
  269. 269.
    Hameed S, Hasan O (2016) Towards autonomous collision avoidance in surgical robots using image segmentation and genetic algorithms. In: 2016 IEEE region 10 symposium (TENSYMP), pp 266–270.  https://doi.org/10.1109/tenconspring.2016.7519416
  270. 270.
    Dey J et al (2016) Moving object detection using genetic algorithm for traffic surveillance. In: International conference on electrical, electronics, and optimization techniques (ICEEOT), pp 2289–2293.  https://doi.org/10.1109/iceeot.2016.7755101
  271. 271.
    Das S, De S (2016) Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired fuzzy C-means clustering. In: 2016 second international conference on research in computational intelligence and communication networks (ICRCICN), pp 78–83.  https://doi.org/10.1109/icrcicn.2016.7813635
  272. 272.
    Bedruz RA et al (2016) Philippine vehicle plate localization using image thresholding and genetic algorithm, pp 2822–2825.  https://doi.org/10.1109/tencon.2016.7848557
  273. 273.
    Al-Sahaf H et al (2017) Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans Evolut Comput 21(1):83–101.  https://doi.org/10.1109/TEVC.2016.2577548 Google Scholar
  274. 274.
    Patra S et al (2013) A novel context sensitive multilevel thresholding for image segmentation. Appl Soft Comput 23:122–127.  https://doi.org/10.1016/j.asoc.2014.06.016 Google Scholar
  275. 275.
    Kim EY et al (2000) A genetic algorithm-based segmentation of markov random field modeled images. IEEE Signal Process Lett 7(11):301–303.  https://doi.org/10.1109/97.873564 Google Scholar
  276. 276.
    Yoshimura M, Oe S (2003) Evolutionary segmentation of texture image using genetic algorithms towards automatic decision of optimum number of segmentation areas. Pattern Recogn 32:2041–2054.  https://doi.org/10.1016/S0031-3203(99)00004-7 Google Scholar
  277. 277.
    Chun DN, Yang HS (1996) Robust image segmentation using genetic algorithm with a fuzzy measure. Pattern Recogn 29(7):1195–1211.  https://doi.org/10.1016/0031-3203(95)00148-4 Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  • Siddharth Singh Chouhan
    • 1
    Email author
  • Ajay Kaul
    • 1
  • Uday Pratap Singh
    • 2
  1. 1.Shri Mata Vaishno Devi UniversityKatraIndia
  2. 2.Madhav Institute of Technology and ScienceGwaliorIndia

Personalised recommendations