Dynamic Texture Segmentation Approaches for Natural and Manmade Cases: Survey and Experimentation

  • Shilpa PaygudeEmail author
  • Vibha Vyas
Original Paper


Dynamic Textures are temporal extension of static textures. Texture is defined as an image with some repetitive pattern in it. Dynamic texture (DT) is nothing but video data with some stationary properties and some moving objects in it. DT segmentation is a broad branch of DT Analysis. Segmentation is separating disjoint regions in the image frames which have homogeneous properties such as texture, color, motion. An important role is played by it in the applications like forest fire detection, traffic density detection, crowd congestion detection before stampede, auto pilot airplanes. There are various approaches used for DT segmentation. In this paper, the approaches based on optical flow, local spatiotemporal technique (Local Binary Pattern) and Global spatiotemporal technique (Contourlet transform) are discussed. Each technique is used and modified or combined with some other technique by researchers. This paper gives an overview of all techniques along with variations in them and the benefits achieved by using them on DT dataset. Some experimental results are also presented.


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Polana R, Nelson R (1997) Temporal texture and activity recognition. Motion-Based Recognition. Kluwer, Norwell, MA, pp 87–115Google Scholar
  2. 2.
    Chetverikov D, Peteri R (2005) A brief survey of dynamic texture description and recognition. In: Proceedings of the 4th international conference computer recognition systems, pp 17–26Google Scholar
  3. 3.
    Doretto G, Cremers D, Favaro P, Soatto S (2003) Dynamic texture segmentation. In: Processing of 9th IEEE international conference on computer vision (ICC’03), vol 2, pp 1236–1242Google Scholar
  4. 4.
    Doretto G, Chiuso A, Wu YN, Soatto S (2003) Dynamic textures. Int J Comput Vis 51(2):91–109CrossRefzbMATHGoogle Scholar
  5. 5.
    Vidal R, Ravichandran A (2005) Optical flow estimation and segmentation of multiple moving dynamic textures. In: Proceedings of the IEEE international conference computer vision pattern recognition, pp 516–521Google Scholar
  6. 6.
    Cooper L, Liu J, Huang K (2005): Spatial segmentation of temporal texture using mixture linear models. In: Proceedings of the international conference on dynamical vision, pp 142–150Google Scholar
  7. 7.
    Chan AB, Vasconcelos N (2008) Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Trans Pattern Anal Mach Intell 30(5):909–926CrossRefGoogle Scholar
  8. 8.
    Chan AB, Vasconcelos N (2009) Variational layered dynamic textures. In: IEEE international conference on computer vision and pattern recognition, pp 1062–1069Google Scholar
  9. 9.
    Fleet DJ, Weiss Y (2006) Optical flow estimation. In: Handbook of mathematical models in computer vision. Springer, Berlin. ISBN 0-387-26371-3Google Scholar
  10. 10.
    Vidal R, Ravichandran A (2005) Optical flow estimation & segmentation of multiple moving dynamic textures. In: Proceedings of IEEE international conference computer vision and pattern recognition, pp 516–521Google Scholar
  11. 11.
    Quan H, Wang C (2009) Overview of dynamic texture recognition techniques based on optical flow. In: IEEE international conference on computational intelligence and software engineering, Wuhan, ChinaGoogle Scholar
  12. 12.
    Barron JL, Fleet DJ, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRefGoogle Scholar
  13. 13.
    Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  14. 14.
    Bruhn A, Weickert J, Schnörr C (2005) Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int J Comput Vis 61(3):211–231CrossRefGoogle Scholar
  15. 15.
    Quan H (1899) A new method of dynamic texture segmentation based on optical flow and level set combination. In: IEEE international conference on information science and engineering, pp 1063–1066Google Scholar
  16. 16.
    Amiaz T, Fazekas S, Chetverikov D, Kiryati N (2007) Detecting regions of dynamic texture. In: International conference on scale space and variational methods in computer vision, LNCS 4485, pp 848–859Google Scholar
  17. 17.
    Chetverikov D, Fazekas S, Haindl M (2011) Dynamic texture as foreground and background. Mach Vis Appl 22(5):741–750CrossRefGoogle Scholar
  18. 18.
    Chen J, Shan S, He C, Zhao G, Pietikainen M, Chen X, Gao W (2010) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720CrossRefGoogle Scholar
  19. 19.
    Chen J, Zhao G, Pietikäinen M (2009) An improved local descriptor and threshold learning for unsupervised dynamic texture segmentation. In: Proceedings of the 12th IEEE international conference on computer vision workshop, pp 460–467Google Scholar
  20. 20.
    Chen J, Zhao G, MikkoSalo ER, Pietikinen M (2013) Automatic dynamic texture segmentation using local descriptors and optical flow. IEEE Trans Image Process 22(1):326–339MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928CrossRefGoogle Scholar
  22. 22.
    Zhao G, Ahonen T, Matas J, Pietikainen M (2012) Rotation-invariant image and video description with local binary pattern features. IEEE Trans Image Process 21(4):1465–1477MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125CrossRefGoogle Scholar
  24. 24.
    Qian X, Hua X-S, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit 44(10–11):2502–2515CrossRefGoogle Scholar
  25. 25.
    Nosaka R, Ohkawa Y, Fukui K (2011) Feature extraction based on co-occurrence of adjacent local binary patterns. In: Advances in image and video technology, pacific rim symposium on image and video technology, PSIVT, pp 82–91Google Scholar
  26. 26.
    Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479CrossRefGoogle Scholar
  27. 27.
    Brahnam S, Jain LC, Nanni L, Lumini A (eds) (2014) Local binary patterns: new variants and applications. Springer, BerlinzbMATHGoogle Scholar
  28. 28.
    Zhao Y, Jia W, Hu R-X, Min H (2013) Completed robust local binary pattern for texture classification. J Neurocomput 106:68–76CrossRefGoogle Scholar
  29. 29.
    Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 41(6):765–781CrossRefGoogle Scholar
  30. 30.
    Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. In: IEEE SCIA 2009: image analysis, pp 61–70Google Scholar
  31. 31.
    Liu L, Fieguth P, Guo Y, Wang X, Pietikinen M (2011) Local binary features for texture classification. Pattern Recognit 62(C):135–160Google Scholar
  32. 32.
    Dubois S, Péteri R, Ménard M (2013) Characterization and recognition of dynamic textures based on the 2D + T curvelet transform. In: Springer signal image and video processing. SIViP, Verlag, LondonGoogle Scholar
  33. 33.
    Candès E (1998) Ridgelets: Theory and applications. Ph.D. thesis, University of StanfordGoogle Scholar
  34. 34.
    Donoho D, Duncan M (1999) Digital curvelet transform: strategy, implementation and experiments. In: Wavelet applications VII. SPIE, pp 12–29Google Scholar
  35. 35.
    Do MN (2001) Directional multiresolution image representation. PhD thesis, Lau same, SwitzerlandGoogle Scholar
  36. 36.
    Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106CrossRefGoogle Scholar
  37. 37.
    Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101CrossRefGoogle Scholar
  38. 38.
    Peteri R, Fazekas S, Huiskes MJ (2010) DynTex: a comprehensive database of dynamic textures. Pattern Recognit Lett 31(12):1627–1632CrossRefGoogle Scholar
  39. 39.
    Lazarg H (2012) Combination of the level-set methods with the Contourlet transform for the segmentation of the IVUS images. Int J Biomed Imag 2012:1CrossRefGoogle Scholar
  40. 40.
    Long Z, Younan NH (2013) Multiscale texture segmentation via a contourlet contextual hidden Markov model. J Dig Sig Process 23(3):859–869MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhao H, Zhao X, Zhang T, Liu Y (2017) A new contourlet transform with adaptive directional partitioning. IEEE Signal Process Lett 24(6):843–847CrossRefGoogle Scholar
  42. 42.
    Wang X, Chen W, Gao J, Wang C (2018) Hybrid image denoising method based on non-subsampled contourlet transform and bandelet transform. IET Image Proc 12(5):778–784CrossRefGoogle Scholar
  43. 43.
    Upla KP, Joshi MV, Gajjar PP (2015) An Edge preserving multiresolution fusion: use of contourlet transform and MRF prior. IEEE Trans Geosci Remote Sens 53(6):3210–3220CrossRefGoogle Scholar
  44. 44.
    Devanna H, Satish Kumar GAE, Giriprasad MN (2016) Analysis and applications of modified non-subsampled contourlet transform. In: IEEE international conference on recent trends in engineering, science and technology: (ICRTEST 2016)Google Scholar
  45. 45.
    Shabanzade F, Ghassemian H (2017) Combination of wavelet and contourlet transforms for PET and MRI image fusion. In: Artificial intelligence and signal processing conference (AISP)Google Scholar
  46. 46.
    Babu JJJ, Sudha GF (2014) Non-subsampled contourlet transform based image Denoising in ultrasound thyroid images using adaptive binary morphological operations. IET Comput Vision 8(6):718–728CrossRefGoogle Scholar
  47. 47.
    Yongpeng X, Qian Y, Yang F, Li Z, Sheng G, Jiang X (2018) DC cable feature extraction based on the PD image in the non-subsampled contourlet transform domain. IEEE Trans Dielectr Electr Insul 25(2):533–540CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.Maharashtra Institute of TechnologyPuneIndia
  2. 2.College of EngineeringPuneIndia

Personalised recommendations