Advertisement

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element Methods: A Survey

  • Shahab U. Ansari
  • Masroor Hussain
  • Suleman Mazhar
  • Tareq ManzoorEmail author
  • Khalid J. Siddiqui
  • Muhammad Abid
  • Habibullah Jamal
Original Paper
  • 358 Downloads

Abstract

The mesh partitioning in parallel Finite Element Method (FEM) is an NP-hard problem. During the past few decades, several heuristic approaches have been proposed to address this problem. In addition to mesh distribution, solving a large set of algebraic equations also significantly contributes to the performance of a parallel solution. A number of efficient equation solving techniques are developed which exploit inherent properties of large coefficient matrices (for instance, symmetry and positive definiteness). In the present study, the performance of a distributed FEM system on the basis of the mesh partitioning approaches and equation solvers is discussed. The work contributes towards: (i) categorizing mesh partitioning methods, (ii) examining implementation variations in linear and nonlinear solution of equations, and (iii) exploring the impact of mesh partitioning and an equation solver on the performance of a distributed FEM system.

References

  1. 1.
    Hussain M, Kavokin A, (2009) A 2D parallel algorithm using MPICH for calculation of ground water flux at evaporation from water table. In: proceedings of FIT’09, Abbottabad.Google Scholar
  2. 2.
    Hussain M, (2011) ALE moving mesh generation and high performance implementation using OpenMP and MPI libraries for FSI and Darcy flow problems, PhD Thesis, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan InstituteGoogle Scholar
  3. 3.
    Hussain M, Kavokin A (2012) A calculation of 3D model of ground water flux at evaporation from water table using parallel algorithm—MPICH. Int J Math Phys 3(2):128–132Google Scholar
  4. 4.
    Salmon JK (1991) Parallel Hierarchical N-Body Methods,” PhD Thesis, California Institute of TechnologyGoogle Scholar
  5. 5.
    Keyser JD, Roose D (1992) Grid partition by inertial recursive bisection. Department of Computer Science, K. U. Leuven, LeuvenGoogle Scholar
  6. 6.
    LaSalle D, Karypis G (2013) Multi-threaded graph partitioning. 27th IEEE international parallel and distributed processing symposiumGoogle Scholar
  7. 7.
    Karypis G, Kumar V (1996) Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceedings of IEEE SupercomputingGoogle Scholar
  8. 8.
    Gilbert JR, Miller GL, Teng SH,(1995) Geometric mesh partitioning: implementation and experiments. In: proceedings of the 9th international parallel processing symposium, IEEE Computer Society Press, 418–427Google Scholar
  9. 9.
    Flaherty JE, Loy RM, Shephard MS, Szymanski BK, Teresko JD, Ziantz LH (1997) Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws. J Parallel Distrib Comput 47(2):139–152CrossRefGoogle Scholar
  10. 10.
    Karypis G, Kumar V (1998) A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J Parallel Distrib Comput 48:71–85CrossRefGoogle Scholar
  11. 11.
    Schloegel K, Karypis G, Kumar V (2002) Parallel static and dynamic multi-constraint graph partitioning. Concurr Comput 14:219–240CrossRefzbMATHGoogle Scholar
  12. 12.
    Boman EG, Catalyurek UV, Chevalier C, Devine KD, Safro I, Wolf MM (2009) Advances in parallel partitioning, load balancing and matrix ordering for scientific computing. J Phys 180:12008Google Scholar
  13. 13.
    Karypis G, Schloegel K (2013) PARMETIS: parallel graph partitioning and sparse matrix ordering library, version 4.0. University of Minnesota, MinneapolisGoogle Scholar
  14. 14.
    Hussain M, Abid M, Ahmad M, Hussain SF (2013) A parallel 2D stabilized finite element method for darcy flow on distributed systems. World Appl Sci J 27(9):1119–1125Google Scholar
  15. 15.
    George A, Liu JW (1981) Computer solution of large sparse positive definite systems. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  16. 16.
    Farhat C (1988) A simple and efficient automatic FEM domain decomposer. Comput Struct 28(5):579–602CrossRefGoogle Scholar
  17. 17.
    Pothen A, Simon HD, Liou K (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal Appl 11(3):430–452MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Karypis G, Kumar V (1998) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48:96–129CrossRefzbMATHGoogle Scholar
  19. 19.
    Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Karypis, V. Kumar (1998) Multilevel algorithm for multi-constraint graph partitioning.In: proceedings of ACM/IEEE on Supercomputing, 1–13Google Scholar
  21. 21.
    Hussain M, Abid M, Ahmad M (2012) Stabilized mixed finite elements for Darcy’s law on distributed memory systems. In: proceedings of international symposium on frontiers of computational sciences, Islamabad. pp. 39–47Google Scholar
  22. 22.
    Chamberlain BL (1998) Graph partitioning algorithms for distributing workloads of parallel computations. Technical Report UW-CSE-98-10-03, University of WashingtonGoogle Scholar
  23. 23.
    Karypis G, Kumar V (1999) Parallel Multilevel k-way partitioning scheme for irregular graphs. SIAM J Comput 41(2):278–300MathSciNetzbMATHGoogle Scholar
  24. 24.
    Warren MS, Salmon JK (1993) A parallel hashed oct-tree N-body algorithm. In: proceedings of supercomputing’93, ACM New York, NY,pp. 12–21Google Scholar
  25. 25.
    Flaherty JE, Loy RM, Ozturan C, Shephard MS, Szymanski BK, Teresko JD, Ziantz LH (1998) “Parallel structures and dynamic load balancing for adaptive finite element computation”. Appl Numer Math 26(1): 241–263MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    TU T, O’Hallaron DR, Ghattas O, Scalable parallel octree meshing for terascale applications. In: proceedings of ACM/IEEE SC05, 2005Google Scholar
  27. 27.
    Mitchell WF (2007) A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids. J Parallel Distrib Comput 67(4):417–429CrossRefzbMATHGoogle Scholar
  28. 28.
    Pellegrini F (2011) Current challenges in parallel graph partitioning. C R Mecanique 339:90–95CrossRefzbMATHGoogle Scholar
  29. 29.
    Bichot E, Siarry P (2013) Graph partitioning. Wiley, Hoboken, pp. 81–114CrossRefzbMATHGoogle Scholar
  30. 30.
    Hendrickson B, Leland R (1995) An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J Sci Comput 16(2):452–469MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bui T, Jones C (1993) A heuristic for reducing fill in sparse matrix factorization. In: proceedings of the 6th SIAM conference on parallel processing for scientific computing, pp. 445–452Google Scholar
  32. 32.
    Barnard ST (1995) A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems 1995Google Scholar
  33. 33.
    Barnard ST, Simon HD (1994) A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr Pract Exp 6(2):101–117CrossRefGoogle Scholar
  34. 34.
    Luby M (1986) A simple parallel algorithm for the maximal independent set problem. SIAM J Comput 15:1036–1053MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    George A (1973) Nested dissection of a regular finite element mesh. SIAM J Num Anal 10:345–363MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Grama A, Gupta A, Karypis G, Kumar V, (2003) Introduction to parallel computing. 2nd edn Addison-Wesley, BostonGoogle Scholar
  37. 37.
    Korošec P, Šilc J, Robič B (2004) Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput 30(5–6):785–801CrossRefzbMATHGoogle Scholar
  38. 38.
    K. Taškova, P. Korošec, J. Šilc (2008) A distributed multilevel ant colonies approach. Informatica. 32(3):307–317zbMATHGoogle Scholar
  39. 39.
    Davis TA (2006) Direct methods for sparse linear systems SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  40. 40.
    Saad Y (2003) Iterative methods for sparse linear systems. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  41. 41.
    Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015) Stabilized mixed galerkin method for transient analysis of Darcy flow. ICMSAO’15, Istanbul pp. 27–29Google Scholar
  42. 42.
    Hussain M, Ahmad M, Abid M, Khokhar A (2009) Implementation of 2D parallel ale mesh generation technique in fsi problems using openmp. In: proceedings of fit’09, AbbottabadGoogle Scholar
  43. 43.
    Hussain M, Abid M, Ahmad M, Khokhar A, Masud A (2011) A parallel implementation of ALE moving mesh technique for FSI Problems using OpenMP. Int J Parallel Progr 30:717–745CrossRefGoogle Scholar
  44. 44.
    Muhammad A, Khan A, Nash D, Hussain M, Wajid HA (2015) Simulation of optimized bolt tightening strategies for gasketed flanged pipe joints. In: proceedings of 14th International Conference on Pressure Vessel Technology, 23–26 SeptemberGoogle Scholar
  45. 45.
    Muhammad A, Khan A, Hussain M, Wajid HA (2015) Optimized bolt tightening procedure for different tightening strategies—FEA study. Proc Inst Mech Eng Part E. doi: 10.1177/0954408915589687 Google Scholar
  46. 46.
    Woodfords C, Philips C, (2012) Numerical methods with worked examples: Matlab edition. 2nd ed, Springer, DordrechtGoogle Scholar
  47. 47.
    Lagrange JL (1811) Mécanique Analytique sect. IV 2 vol. ParisGoogle Scholar
  48. 48.
    Masud A, Bhagvanwala M, Khurram RA (2005) An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction. Comput Fluids 36:77–91MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Glowinski R (2008) Numerical methods for nonlinear variational problems Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  50. 50.
    Hendrickson B, Devine K (2000) Dynamic load balancing in computational mechanics. Comput Methods Appl Mech Eng 184(2–4):485–500CrossRefzbMATHGoogle Scholar
  51. 51.
    Schamberger S, Wierum JM (2005) Partitioning finite element meshes using space-filling curves. Future Gener Comput Syst 21:759–766CrossRefGoogle Scholar
  52. 52.
    Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015) Parallel stabilized mixed galerkin method for three-dimensional Darcy flow using openMp. NSEC Islamabad, Dec 17Google Scholar
  53. 53.
    Kaliakin VN (2001) Introduction to approximate solution techniques. In Numerical modeling, and finite element methods CRC PressGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2017

Authors and Affiliations

  • Shahab U. Ansari
    • 1
  • Masroor Hussain
    • 1
  • Suleman Mazhar
    • 3
  • Tareq Manzoor
    • 4
  • Khalid J. Siddiqui
    • 1
  • Muhammad Abid
    • 5
  • Habibullah Jamal
    • 2
  1. 1.Faculty of Computer Science and EngineeringGhulam Ishaq Khan InstituteTopiPakistan
  2. 2.Faculty of Engineering SciencesGhulam Ishaq Khan InstituteTopiPakistan
  3. 3.Faculty of Computer ScienceInformation Technology UniversityLahorePakistan
  4. 4.Energy Research CenterCOMSATS Institute of Information TechnologyLahorePakistan
  5. 5.Interdisciplinary Research CenterCOMSATS Institute of Information TechnologyWahPakistan

Personalised recommendations