Advertisement

Arthropod-Plant Interactions

, Volume 13, Issue 1, pp 109–116 | Cite as

Members of the WRKY gene family are upregulated in Canary palms attacked by Red Palm Weevil

  • Gabriella Lo Verde
  • Veronica Fileccia
  • Paolo Lo Bue
  • Ezio Peri
  • Stefano Colazza
  • Federico MartinelliEmail author
Original Paper
  • 55 Downloads

Abstract

The Red Palm Weevil (RPW), Rhynchophorus ferrugineus, is one of the major pests affecting several palm species all around the world. The aim of this work was to identify palm genes that are responsive to RPW infestations as a valuable diagnostic tool to detect the insect attack. We have analysed a total of 15 genes that were divided in two subsets: (1) 7 genes previously linked with RPW attacks, but not involved in biotic stress responses, and (2) 8 genes encoding members of the WRKY family, a class of transcription factors well-known to be linked with both abiotic and biotic stress responses. The analysis was conducted on 4-year-old Canary palms comparing uninfested plants and infested plants at 30 and 45 days after RPW oviposition. Principal component analysis of gene expression data showed that the overall analysis of WRKYs partially distinguished the three groups of plants. No separation of the three groups was observed when PCA was conducted using genes that were not linked with biotic stress responses. Among the 8 analysed WRKYs, 4 genes (WRKY2, WRKY28, WRKY14, WRKY51) were significantly induced by RPW attacks at 45 days after the beginning of the infestation. These four WRKYs could be further investigated to confirm if they may be used to help diagnosis of RPW infestations in palm.

Keywords

Palm Phoenix canariensis Hort. ex Chabaud Rhynchophorus ferrugineus WRKYs 

Notes

Acknowledgements

The authors wish to thank the Servizio Informativo Agrometeorologico Siciliano—SIAS—of the Sicilian Region for providing temperature data.

Supplementary material

11829_2018_9653_MOESM1_ESM.xlsx (9 kb)
Supplementary material 1 (XLSX 9 KB)

References

  1. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527.  https://doi.org/10.1038/nbt.1860 CrossRefGoogle Scholar
  2. Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L, Zhang T, Yin Y, Xin C, Wu H, Zhang G, Ba Abdullah MM, Huang D, Fang Y, Alnakhli YO, Jia S, Yin A, Alhuzimi EM, Alsaihati BA, Al-Owayyed SA, Zhao D, Zhang S, Al-Otaibi NA, Sun G, Majrashi MA, Li F, Tala Wang J, Yun Q, Alnassar NA, Wang L, Yang M, Al-Jelaify RF, Liu K, Gao S, Chen K, Alkhaldi SF, Liu G, Zhang M, Guo H, Yu J (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:2274.  https://doi.org/10.1038/ncomms3274 CrossRefPubMedCentralGoogle Scholar
  3. Barrett AJ (1994) Classification of peptidases. Methods Enzymol 244:1–15.  https://doi.org/10.1016/0076-6879(94)44003-4 CrossRefGoogle Scholar
  4. Bertrand G (1985) Sur la laccase et sur le pouvoir oxydant de cette diastase. CR Acad Sci Paris; 120:266–269Google Scholar
  5. Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42:387–396.  https://doi.org/10.1023/A:1006399311615 CrossRefGoogle Scholar
  6. Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32(10):1589–1599.  https://doi.org/10.1007/s00299-013-1469-3 CrossRefGoogle Scholar
  7. Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E, Okada K (2013) OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 82(1–2):23–37.  https://doi.org/10.1007/s11103-013-0032-5 CrossRefGoogle Scholar
  8. Dandekar AM, Martinelli F, Davis CE, Bhushan A, Zhao W, Fiehn O, Skogerson K, Wohlgemuth G, D’Souza R, Roy S, Reagan RL, Lin D, Cary RB, Pardington P, Gupta G (2010) Analysis of early host responses for asymptomatic disease detection and management of specialty crops. Crit Rev Immunol 30:277–289.  https://doi.org/10.1615/CritRevImmunol.v30.i3.50 CrossRefGoogle Scholar
  9. de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:4624–4631CrossRefPubMedCentralGoogle Scholar
  10. Dembilio Ó, Jaques J (2015) A Biology and management of red palm weevil. In: Wakil W, Romeno Faleiro J, Miller ThA (eds) sustainable pest management in date palm: current status and emerging challenges. Springer, New York, pp 13–36CrossRefGoogle Scholar
  11. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37.  https://doi.org/10.1023/A:1020780022549 CrossRefGoogle Scholar
  12. Francesca N, Alfonzo A, Lo Verde G, Settanni L, Sinacori M, Lucido P, Moschetti G (2014) Biological activity of Bacillus spp. evaluated on eggs and larvae of red palm weevil Rhynchophorus ferrugineus. Ann Microbiol 65:477–485.  https://doi.org/10.1007/s13213-014-0881-4 CrossRefGoogle Scholar
  13. Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476.  https://doi.org/10.1104/pp.110.166876 CrossRefGoogle Scholar
  14. Giovino A, Bertolini E, Fileccia V, Al Hassan M, Labra M, Martinelli F (2015) Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks. Front Plant Sci 6:817.  https://doi.org/10.3389/fpls.2015.00817 CrossRefPubMedCentralGoogle Scholar
  15. Giovino A, Martinelli F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58:388–396.  https://doi.org/10.1111/jipb.12430 CrossRefGoogle Scholar
  16. Guarino S, Lo Bue P, Peri E, Colazza S (2011) Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment. Pest Manag Sci 67:77–81.  https://doi.org/10.1002/ps.2035 CrossRefGoogle Scholar
  17. Guarino S, Peri E, Lo Bue P, Germanà MP, Colazza S, Anshelevich L, Ravid U, Soroker V (2013) Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant-baited traps in an urban environment. Phytoparasitica 41:79–88.  https://doi.org/10.1007/s12600-012-0266-9 CrossRefGoogle Scholar
  18. Guarino S, Colazza S, Peri E, Lo Bue P, Germanà MP, Kuznetsova T, Gindin G, Soroker V (2015) Behaviour-modifying compounds for management of the red palm weevil (Rhynchophorus ferrugineus Oliver). Pest Manag Sci 71:1605–1610.  https://doi.org/10.1002/ps.3966 CrossRefGoogle Scholar
  19. Guillaumie S, Mzid R, Mechin V, Leon C, Hichri S, Destrac-Ivine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development into tobacco. Plant Mol Biol 72:215–234.  https://doi.org/10.1007/s11103-009-9563-1 CrossRefGoogle Scholar
  20. Jaques JA, Riolo P, Audsley N, Barroso JM, Dembilio O, Isidoro N, Minuz RL, Nardi S, Navarro- Llopis V, Beaudoin-Ollivier L, QuesadaMoraga E (2017) Control Measures Against Rhynchophorus ferrugineus and Paysandisia archon. In: Soroker V, Colazza S (eds) Handbook of major palm pests: biology and management. Wiley, Hoboken, pp 255–279CrossRefGoogle Scholar
  21. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286 CrossRefGoogle Scholar
  22. Kang K, Park S, Natsagdorj U, Kim YS, Back K (2011) Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J 66:247–257.  https://doi.org/10.1111/j.1365-313X.2011.04486.x CrossRefGoogle Scholar
  23. Kontodimas D, Soroker V, Pontikakos C, Suma P, Beaudoin-Ollivier L, Karamaouna F, Riolo P (2017) Visual identification and characterization of Rhynchophorus ferrugineus and Paysandisia archon. In: Soroker V, Colazza S (eds) Handbook of major palm pests: biology and management. Wiley, Hoboken, pp 187–208CrossRefGoogle Scholar
  24. Lo Verde G, La Mantia G, Griffo R (2011) El estado de la infestación por Rhynchophorus ferrugineus (Olivier) en Italia y los resultados de las pruebas de cirugía arbórea para el control de palmeras infestadas. Phytoma España 226:85–88Google Scholar
  25. Lo Verde G, Torta L, Mondello V, Caldarella CG, Burruano S, Caleca V (2014) Pathogenicicty bioassays of isolates of Beauveria bassiana on Rhynchophorus ferrugineus. Pest Manag Sci 71:323–328.  https://doi.org/10.1002/ps.385 CrossRefGoogle Scholar
  26. Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, Davis C, Bowman KD, Dandekar AM (2013) Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS ONE 8(9):e74256.  https://doi.org/10.1371/journal.pone.0074256 CrossRefPubMedCentralGoogle Scholar
  27. Martinelli F, Dolan D, Fileccia V, Reagan RL, Phu M, Spann TM, McCollum TG, Dandekar AM (2016) Molecular responses to small regulating molecules against Huanglongbing disease. PLoS ONE 11(7):e0159610.  https://doi.org/10.1371/journal.pone.0159610 CrossRefPubMedCentralGoogle Scholar
  28. Martínez-Rach M, Migallón Gomis H, López Granado O, Perez Malumbres M, Martí Campoy A, Serrano Martín JJ (2013) On the design of a Bioacoustic sensor for the early detection of the Red Palm Weevil. Sensors 13:1706–1729.  https://doi.org/10.3390/s130201706 CrossRefGoogle Scholar
  29. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60: 551 – 65.  https://doi.org/10.1016/S0031-9422(02)00171-1
  30. Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434–447.  https://doi.org/10.1111/j.1399-3054.2007.00975.x CrossRefGoogle Scholar
  31. Nakash J, Osem Y, Kehat M (2000) A Suggestion to Use Dogs for Detecting Red Palm Weevil (Rhynchophorus ferrugineus) Infestation in Date Palms in Israel. Phytoparasitica 28:153–155.  https://doi.org/10.1007/BF02981745 CrossRefGoogle Scholar
  32. Pasini C, Rumine P (2014) Il Punteruolo rosso delle palme Rhynchophorus ferrugineus (Olivier): biologia, dannosità e linee di difesa. Italus Hortus 21(2):49–65Google Scholar
  33. Rochat D, Dembilio O, Jaques JA, Suma P, La Pergola A, Hamidi R, Kontodimas D, Soroker V (2017) Rhynchophorus ferrugineus: taxonomy, distribution, biology, and life cycle. In: Soroker V, Colazza S (eds) Handbook of major palm pests: biology and management. Wiley, Hoboken, pp 69–104CrossRefGoogle Scholar
  34. Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2: reviews3004.1–3004.6Google Scholar
  35. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258.  https://doi.org/10.1016/j.tplants.2010.02.006 CrossRefGoogle Scholar
  36. SAS Institute (2008) SAS/STAT9.2. User’s Guide. SAS Institute Inc, CaryGoogle Scholar
  37. Soroker V, Suma P, La Pergola A, Llopis VN, Vacas S, Cohen Y, Cohen Y, Alchanatis V, Milonas P, Golomb O, Goldshtein E (2017) Surveillance techniques and detection methods for Rhynchophorus ferrugineus and Paysandisia archon. In: Soroker V, Colazza S (eds) Handbook of major palm pests: biology and management. Wiley, Hoboken, pp 209–232CrossRefGoogle Scholar
  38. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760 – 770.  https://doi.org/10.1105/tpc.009159 CrossRefPubMedCentralGoogle Scholar
  39. Suma P, La Pergola A, Longo A, Soroker V (2013) The use of sniffing dogs for the detection of Rhynchophorus ferrugineus. Phytoparasitica 42:269–274.  https://doi.org/10.1007/s12600-013-0330-0 CrossRefGoogle Scholar
  40. Suma P, Peri E, La Pergola A, Soroker V, Dembilio O, Riolo P, Nardi S (2017) Action Programs for Rhynchophorus ferrugineus and Paysandisia archon. In: Soroker V, Colazza S (eds) Handbook of major palm pests: biology and management. Wiley, Hoboken, pp 280–299CrossRefGoogle Scholar
  41. Vacas S, Melita O, Michaelakis A, Milonas P, Minuz R, Riolo P, Abbass MK, Lo Bue P, Colazza S, Peri E, Soroker V, Livne Y, Primo J, Navarro-Llopis V (2017) Lures for red palm weevil trapping systems: aggregation pheromone and synthetic kairomone. Pest Manag Sci 73:223–231.  https://doi.org/10.1002/ps.4289 CrossRefGoogle Scholar
  42. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last. the life of many plant proteins. Trends Plant Sci 8:135–142.  https://doi.org/10.1016/S1360-1385(03)00014-1 CrossRefGoogle Scholar
  43. Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386.  https://doi.org/10.1016/S1360-1385(00)01720-9 CrossRefGoogle Scholar
  44. Wu L, Zhong G, Wang J, Li X, Song X, Yang Y (2011) Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen, Botrytis cinerea. Afr J Microbiol Res 5:5481–5488.  https://doi.org/10.5897/AJMR11.781 CrossRefGoogle Scholar
  45. Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242.  https://doi.org/10.1111/j.1365-313X.2006.02694.x CrossRefGoogle Scholar
  46. Yan C, Fan M, Yang M, Zhao J, Zhang W, Su Y, Xiao L, Deng H, Xie D (2018) Injury activates Ca2+/Calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol Cell 70(1):136–149.  https://doi.org/10.1016/j.molcel.2018.03.013 CrossRefGoogle Scholar
  47. Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134::1500–1513.  https://doi.org/10.1104/pp.103.034967 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Universita degli studi di Palermo, Dipartimento di Scienze Agrarie Alimentari e ForestaliPalermoItaly

Personalised recommendations