Arthropod-Plant Interactions

, Volume 13, Issue 1, pp 71–77 | Cite as

Positive effects of the pollinators Osmia cornuta (Megachilidae) and Lucilia sericata (Calliphoridae) on strawberry quality

  • John David HerrmannEmail author
  • Henriette Beye
  • Christel de la Broise
  • Hollyn Hartlep
  • Tim Diekötter
Original Paper


In the last decades, the fraction of crops requiring biotic pollination has increased dramatically. While wind- and self-pollination is possible for some of these crops, insect pollination generally increases yields and quality of produce. Especially pollinator communities with varying traits often show additive, positive effects on crop pollination. The aim of this study was to investigate the effect of two pollinator species with contrasting life history traits, the European orchard bee, Osmia cornuta, and the green bottle fly, Luciana sericata, on fruit quality, namely size, weight, shape, and color of fruits of the garden strawberry, Fragaria × ananassa We hypothesized that (1) pollination by both species individually results in higher strawberry quality compared to wind- and self-pollination, and (2) combining both species for pollination leads to higher strawberry quality due to higher functional diversity. To test these hypotheses, we used 40 mesh cages, each containing six strawberry plants. Flowering strawberry plants were either exposed to four O. cornuta individuals, four L. sericata individuals, two individuals of each species, or no pollinators (control) for one week. Fruit weight was only significantly higher than the control treatment when strawberry plants were exposed to bees. Fruit deformation, however, significantly decreased with all three pollinator treatments. Strawberry quality in cages with a combination of bees and flies was not superior to strawberry quality in cages with bees alone. Our results highlight the importance of insect pollination for strawberry quality but increased functional diversity of pollinators did not lead to additive pollination effects.


Crop pollination Niche complementarity Life history traits Wild bee 



We thank all students participating in the course “Ecosystem services in agroecosystems” (SS 2017) who were involved in conducting the experiment. We further thank Koppert Biological Systems for providing L. sericata for the course.


  1. Aizen M, Garibaldi L, Cunningham S, Klein A (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18:1572–1575CrossRefGoogle Scholar
  2. Albano S, Salvado E, Duarte S, Mexia A, Borges PA (2009) Pollination effectiveness of different strawberry floral visitors in Ribatejo, Portugal: selection of potential pollinators. Part 2. Adv Hort Sci 23:246–253Google Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects model using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  4. Brittain C, Williams N, Kremen C, Klein A (2013) Synergistic effects of non-Apis bees and honey bees for pollination services. Proc R Soc B 280:20122767CrossRefGoogle Scholar
  5. Cardinale BJ, Weis JJ, Forbes AE, Tilmon KJ, Ives AR (2006) Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator–prey system. J Anim Ecol 75:497–505CrossRefGoogle Scholar
  6. Chagnon M, Gingras J, de Oliveira D (1993) Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J Econ Entomol 86:416–420CrossRefGoogle Scholar
  7. Chang DY, Lee MY, Mah Y (2001) Pollination on strawberry in the vinyl house by Apis mellifera L. and A. cerana. Fab Acta Hortic 561:252–262Google Scholar
  8. Committee on the Status of Pollinators in North America, National Research Council (2007) Status of pollinators in North America. The National Academies Press, Washington, DCGoogle Scholar
  9. European Commission (2011) Commission implementing regulation (EC) no 543/2011. Accessed 15 Jan 2018
  10. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135CrossRefGoogle Scholar
  11. Free JB (1993) Insect pollination of crops, 2nd edn. Academic Press, London, p 768Google Scholar
  12. Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054CrossRefGoogle Scholar
  13. Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci USA 103:13890–13895CrossRefGoogle Scholar
  14. Harder LD, Cruzan MB (1990) An evaluation of the physiological and evolutionary influences of inflorescence size and flower depth on nectar production. Funct Ecol 4:559–572CrossRefGoogle Scholar
  15. Hodgkiss D, Brown MJF, Fountain MT (2018) Syrphine hoverflies are effective pollinators of commercial strawberry. J Pollinat Ecol 22:55–66CrossRefGoogle Scholar
  16. Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Funtional group diversity of bee pollinators increases crop yield. Proc R Soc B 275:2283–2291CrossRefGoogle Scholar
  17. Hooper DU, Chapin DU III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  18. IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, BonnGoogle Scholar
  19. Jauker F, Wolters V (2008) Hover flies are efficient pollinators of oilseed rape. Oecologia 156:819–823CrossRefGoogle Scholar
  20. Jauker F, Bondarenko B, Becker HC, Steffan-Dewenter I (2012) Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agr For Entomol 14:81–87CrossRefGoogle Scholar
  21. Kakutani T, Inoue T, Tezuka T, Maeta Y (1993) Pollination of strawberry by the stingless bee, Trigona minangkabau, and the honey bee, Apis mellifera: an experimental study of fertilization efficiency. Res Popul Ecol 35:95–111CrossRefGoogle Scholar
  22. Klatt BK, Holzschuh A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T (2014) Bee pollination improves crop quality, shelf life and commercial value. Proc R Soc B 281:20132440CrossRefGoogle Scholar
  23. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B 270:955–961CrossRefGoogle Scholar
  24. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313CrossRefGoogle Scholar
  25. Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119CrossRefGoogle Scholar
  26. Kugler H (1970) Blütenökologie. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  27. Kuznetsova A, Bruun Brockhoff P, Haubo Bojesen Christensen R (2016) lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0–33.
  28. Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: I. The taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465CrossRefGoogle Scholar
  29. Lehtilä K, Strauss SY (1997) Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396–403CrossRefGoogle Scholar
  30. Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881CrossRefGoogle Scholar
  31. Muola A, Weber D, Malm LE, Egan PA, Glinwood R, Parachnowitsch AL, Stenberg JA (2017) Direct and pollinator-mediated effects of herbivory on strawberry and the potential for improved resistance. Front Plant Sci 8:823CrossRefGoogle Scholar
  32. Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37:211–215CrossRefGoogle Scholar
  33. Nye WP, Anderson JL (1974) Insect pollinators frequenting strawberry blossoms and the effect of honey bees on yield and fruit quality. J Am Soc Sci 99:40–44Google Scholar
  34. Orford KA, Vaughan IP, Memmott J (2015) The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc R Soc B 282:20142934CrossRefGoogle Scholar
  35. Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature 350:58–59CrossRefGoogle Scholar
  36. Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GKS, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein A-M, Kleijn D, Krishnan S, Lemost CQ, Lindström SAM, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, de O. Pereira, Pisanty N, Pottse G, Reemer SG, Rundlöf M, Sheffield M, Scheper CS, Schüepp J, Smith C, Stanley HG, Stout DA, Szentgyörgy JC, Taki H, Vergara H, Vianax CH, Woyciechowski BF M (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 113:146–151CrossRefGoogle Scholar
  37. Reichle DE (1968) Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology 49:538–542CrossRefGoogle Scholar
  38. Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271CrossRefGoogle Scholar
  39. Roselino AC, Santos SB, Hrncir M, Bego LR (2009) Differences between the quality of strawberries (Fragaria × ananassa) pollinated by the stingless bees Scaptotrigona aff. depilis and Nannotrigona testaceicornis. Genet Mol Res 8:539–545CrossRefGoogle Scholar
  40. Roubik DW (1978) Competitive interactions between neotropical pollinators and Africanized honey bees. Science 201:1030–1032CrossRefGoogle Scholar
  41. Skevington JH, Dang PT (2002) Exploring the diversity of flies (Diptera). Biodiversity 3:3–27CrossRefGoogle Scholar
  42. Ssymank A, Kearns CA, Pape T, Thompson FC (2008) Pollinating flies (Diptera): a major contribution to plant diversity and agricultural production. Biodiversity 9:86–89CrossRefGoogle Scholar
  43. Steffan-Dewenter I (2003) Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie 34:227–235CrossRefGoogle Scholar
  44. Svensson B (1991) The importance of honeybee-pollination for the quality and quantity of strawberries (Fragaria × ananassa) in central Sweden. Acta Hortic 288:260–264CrossRefGoogle Scholar
  45. Träger B, Große WR (2014) Zur Biologie von Lucilia sericata Meig. (Diptera, Calliphoridae) und deren nutzung als destäuber von kulturpflanzen. Hercynia-Ökol Umw Mitteleur 24:153–165Google Scholar
  46. Venjakob C, Klein A-M, Ebeling A, Tscharntke T, Scherber C (2016) Plant diversityincreases spatio-temporal niche complementarity in plant-pollinator interactions. Ecol Evol 6:2249–2261CrossRefGoogle Scholar
  47. Vicens N, Bosch J (2000) Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ Entomol 29:235–240CrossRefGoogle Scholar
  48. Westrich P (1990) Die Wildbienen Baden-Württembergs: Spezieller Teil. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  49. Wietzke A, Westphal C, Gras P, Kraft M, Pfohl K, Karlovsky P, Pawelzik E, Tscharntke T, Smit I (2018) Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agric Ecosyst Environ 258:197–204CrossRefGoogle Scholar
  50. Wilkaniec Z, Radajewska B (1997) Solitary bee Osmia rufa L. (Apoidea, Megachilidae) as pollinator of strawberry cultivated in an unheated plastic tunnel. Acta Hortic 439:489–493CrossRefGoogle Scholar
  51. Winfree R, Williams NM, Dushoff J, Kremen C (2007) Native bees provide insurance against ongoing honey bee losses. Ecol Lett 10:1105–1113CrossRefGoogle Scholar
  52. Zaitoun ST, Al-Ghzawi AA, Shannag HK, Rahman A, Al-Tawaha ARM (2006) Comparative study on the pollination of strawberry by bumble bees and honey bees under plastic house conditions in Jordan valley. J Food Agric Environ 4:237–240Google Scholar
  53. Żebrowska J (1998) Influence of pollination modes on yield components in strawberry (Fragaria × ananassa Duch.). Plant Breeding 117:255–260CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Landscape EcologyKiel UniversityKielGermany

Personalised recommendations