Recent research on enhanced resistance to parasitic nematodes in sweetpotato

  • Yun-Hee KimEmail author
  • Jung-Wook Yang


Sweetpotato yields are affected by diverse environmental factors, such as viruses, fungal diseases, and parasitic nematodes. In particular, plant–parasitic nematodes are major pathogenic factors affecting sweetpotato cultivation regionally. Sedentary endoparasitic nematodes, including root-knot nematodes and cyst nematodes, cause serious sweetpotato yield losses in northeast Asia, including South Korea, China, and Japan. In this review, we describe the current status of research on nematode resistance in sweetpotato and molecular methods for resolving these cultivation problems. Conventional breeding and molecular techniques, including genome-editing-based transgenic technology and omics-based analyses, should be combined to develop sweetpotato cultivars with improved resistance to various important nematodes.


Molecular breeding Nematode Nematode-resistant plants Omics Sweetpotato Transgenic plants 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2018R1A1A1A05018446).


  1. Agu CM (2004) Growth and yield of sweetpotato as affected by Meloidogyne incognita. Trop Sci 44:89–91CrossRefGoogle Scholar
  2. Ahn YS, Chung MN, Lee JS, Jeong BC (2006) A new sweetpotato variety for food and processing,"Juhwangmi". Kor J Breed Sci 38:69–70Google Scholar
  3. Andrade M, Barker I, Cole D, Dapaah H, Elliott H, Fuentes S, Grüneberg W, Kapinga R, Kroschel J, Labarta R, Lemaga B, Loechl C, Low J, Lynam J, Mwanga R, Ortiz O, Oswald A, Thiele G (2009) Unleashing the potential of sweetpotato in sub-Saharan Africa: current challenges and way forward. International Potato Center (CIP), LimaCrossRefGoogle Scholar
  4. Antonio GC, Takeiti CY, de Oliveira RA, Park KJ (2011) Sweetpotato: production, morphological and physicochemical characteristics, and technological process. Fruit Veg Cereal Sci 5:1–18Google Scholar
  5. Atkinson HJ, Urwin PE, Clarke MC, McPherson MJ (1996) Image analysis of the growth of Globodera pallida and Meloidogyne incognita on transgenic tomato roots expressing cystatins. J Nematol 28:209–215Google Scholar
  6. Benian GM, Mercer KB, Miller RK, Tinley TL, Sheth S, Qadota H (2006) Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments. Mol Biol Cell 17:3832–3847CrossRefGoogle Scholar
  7. Boss WF, Im YJ (2012) Phosphoinositide signaling. Ann Rev. Plant Biol 63:409–429CrossRefGoogle Scholar
  8. Bovell-Benjamin AC (2007) Sweetpotato: a review of its past, present, and future role in human nutrition. Adv Food Nut Res 52:1–59CrossRefGoogle Scholar
  9. Cai D, Thurau T, Tian Y, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849CrossRefGoogle Scholar
  10. Choi DR, Lee JK, Park BY, Chung MN (2006) Occutrrence of root-knot nematodes in sweetpotato fields and resistance screening of sweetpotato cultivars. Kor J Appl Entomol 45:211–216Google Scholar
  11. Chen HJ, Wang SJ, Chen CC, Yeh KW (2006) New gene construct strategy in T-DNA vector to enhance expression level of sweetpotato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci 171:367–374CrossRefGoogle Scholar
  12. Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT (2012) Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis 96:168–185CrossRefGoogle Scholar
  13. Clark CA, Ferrin DM, Smith TP, Holmes GJ (eds) (2013) Compendium of sweetpotato diseases, pests and disorders. APS Press, MinnesotaGoogle Scholar
  14. Clark CA, Holmes GJ, Ferrin DM (2009) Chapter 7, major fungal and bacterial diseases. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, New YorkGoogle Scholar
  15. Fan WJ, Wei ZR, Zhang M, Ma PY, Liu GL, Zheng JL, Guo XD, Zhang P (2015) Resistance to Ditylenchus destructor infection in sweetpotato by the expression of small interfering RNAs targeting unc-15, a movement-related gene. Phytopathology 105:1458–1465CrossRefGoogle Scholar
  16. FAO (1998) FAO production year book for 1996, no. 50. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 91–92Google Scholar
  17. Feng JY, Li M, Zhao S, Zhang C, Yang ST, Qiao S, Tan WF, Qu HJ, Wang DY, Pu ZG (2018) Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biol 18:184CrossRefGoogle Scholar
  18. Food and Agriculture Organization of the United Nations (FAO), Food and Agriculture Organization Statistical Databases (FAOSTAT) (2015). Food and Agriculture Organization of the United Nations (FAO), Food and Agriculture Organization Statistical Databases (FAOSTAT), 2015,
  19. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44CrossRefGoogle Scholar
  20. Gao S, Yu B, Yuan L, Zhai H, He SZ, Liu QC (2011) Production of transgenic sweetpotato plants resistant to stem nematodes using Oryzacystatin-I gene. Sci Hort 128:408–414CrossRefGoogle Scholar
  21. Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92CrossRefGoogle Scholar
  22. Guo X, Xie Y, Jia Z, Ma P, Bian X (2012) Study on sweetpotato stem nematode disease. Plant Dis Pests 3:21–23Google Scholar
  23. Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweetpotato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262CrossRefGoogle Scholar
  24. Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sasamoto S, Kohara M, Kishida Y, Fujishiro T, Kato M, Nanri K, Komaki A, Yoshinaga M, Takahata Y, Tanaka M, Tabata S, Isobe SN (2015) Survey of genome sequences in a wild sweetpotato, Ipomoea trifida (H. B. K.) G Don. DNA Res 22:171–179CrossRefGoogle Scholar
  25. Holbein J, Grundler FMW, Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67:2049–2061CrossRefGoogle Scholar
  26. Iwahori H, Sano Z, Ogawa T (2000) Distribution of main plant parasitic nematodes in sweetpotato and taro fields in Kyushu and Okinawa, Japan. 1. Survey in the central and southern parts in Kyushu Island (Kumamoto, Miyazaki and Kagoshima Prefs.) and development of an effective DNA analysis method for species identification. Kyushu Pl Prot Res 46:112–117CrossRefGoogle Scholar
  27. Jeong BC, Oh SK, Park KY, Rho SP, Chung KB, Chung DH, Chin MS, Hong EH, Park RK, Jung JW (1991) A new good eating quality sweetpotato variety "Yulmi". The Research Reports of the Rural Development Administration (Korea Republic). (Jun 1991). v. 33–1(Upland and Ind. Crops) p. 22–28.Google Scholar
  28. Kai Y, Katayama K, Sakai T, Yoshinaga M (2010) Beniharuka: a new sweetpotato cultivar for table use. Sweetpotato Res Front 23:2Google Scholar
  29. Kistner MH, Daiber KC, Bester C (1993) The effect of root-knot nematodes (Meloidogyne spp.) and dry land conditions on the production of sweetpotato. JS Afr Soc Hortic Sci 3:108–110Google Scholar
  30. Kuranouchi T, Takada A, Nakamura Y, Fujita T, Nakatani M, Kumagai T, Katayama K (2015) Breeding of a new sweetpotato variety ‘Hoshikogane’ suitable for steamed and cured sweetpotato slices (‘Hoshi-imo’) with high yield and good quality. Bull Natl Inst Crop Sci 15:1–28Google Scholar
  31. Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J (2013) Nematode feeding sites: unique organs in plant roots. Planta 238:807–818CrossRefGoogle Scholar
  32. La Bonte DR, Wilson PW, Villordon AQ, Clark CA (2008) ‘Evangeline’ sweetpotato. HortScience 43:258–259CrossRefGoogle Scholar
  33. Lee IH, Shim D, Jeong JC, Sung YW, Nam KJ, Yang JW, Ha J, Lee JJ, Kim YH (2019) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 249:431–444CrossRefGoogle Scholar
  34. Loebenstein G, Thottappilly G, Fuentes S, Cohen J (2009) Chapter 8, virus and phytoplasma diseases. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Science+ Bussiness Media B.V., New YorkCrossRefGoogle Scholar
  35. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7CrossRefGoogle Scholar
  36. Mukhopadhyay S, Chattopadhyay A, Chakraborty I, Bhattacharya I (2011) Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Sec 3:283–305CrossRefGoogle Scholar
  37. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Ma Z (2011) Current nematodes threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43CrossRefGoogle Scholar
  38. Nielsen LW, Sasser JN (1959) Control of root-knot nematodes affecting Porto Rico sweetpotatoes. Phytopathology 49:135–140Google Scholar
  39. Ohara-Takada A, Kumagai T, Kuranouchi T, Nakamura Y, Fujita T, Nakatani M, Tamiya S, Katayama T (2016) ‘Aikomachi’, a new sweetpotato cultivar with good appearance and high confectionery quality. Bull Natl Inst Crop Sci 16:35–56Google Scholar
  40. Overstreet C (2009) Chapter 9, nematoses. In: Loebenstein G, Thottappilly G (eds) The Sweetpotato. Springer Science+Bussiness Media B.V., New YorkGoogle Scholar
  41. Palomares-Rius JE, Kikuchi T (2013) Omics fields of study related to plant-parasitic nematodes. J Integ Omics 3:1–10CrossRefGoogle Scholar
  42. Shirasawa K, Tanaka M, Takahata Y, Ma D, Cao Q, Liu Q, Zhai H, Kwak SS, Jeong JC, Yoon UH, Lee HU, Hirakawa H, Isobe S (2017) A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas). Sci Rep 7:44207CrossRefGoogle Scholar
  43. Sorensen KA (2009) Chapter 10, sweetpotato insects: identification, biology and management. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Science+Bussiness Media B.V., New YorkGoogle Scholar
  44. Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance in transgenic rice plants. Theo Appl Gene 96:266–271CrossRefGoogle Scholar
  45. World Bank (2008) World development report 2008: agriculture for development. /e World Bank, Washington DCGoogle Scholar
  46. Xu Z, Zhao YQ, Yang DJ, Sun HJ, Zhang CL, Xie YP (2015) Attractant and repellent effects of sweetpotato root exudates on the potato rot nematode, Ditylenchus destructor. Nematology 17:117–124CrossRefGoogle Scholar
  47. Yamashita M (2003) The influence of a root-knot nematode, Meloidogyne incognita, on formation of root system in sweetpotatoes (Ipomoea batatas (L), Lam)). Root Res 12:115–118CrossRefGoogle Scholar
  48. Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y (2015) Analyses of the complete genome and gene expression of chloroplast of sweetpotato [Ipomoea batata]. PLoS ONEne 10:e0124083CrossRefGoogle Scholar
  49. Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997a) Functional activity of sporamin from sweetpotato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570CrossRefGoogle Scholar
  50. Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997b) Sweetpotato (Ipomoea batatas Lam.) trypsin inhibitors expressed in transgenic plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699CrossRefGoogle Scholar
  51. Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnol J 14:592–602CrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  1. 1.Department of Biology Education, College of Education, and IALSGyeongsang National UniversityJinjuSouth Korea
  2. 2.National Institute of Crop Science, Rural Development AdministrationSuwonSouth Korea

Personalised recommendations