Plant Biotechnology Reports

, Volume 13, Issue 3, pp 285–292 | Cite as

Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice

  • Dagang Jiang
  • Weiting Chen
  • Jieer Gao
  • Fen Yang
  • Chuxiong ZhuangEmail author
Original Article


Trehalose plays an important role in mediating stress responses in plants, and trehalose-6-phosphate synthases and trehalose-6-phosphate phosphatases are essential for trehalose biosynthesis. Here, we address the function of rice (Oryza sativa) OsTPP3. We analyzed the expression of OsTPP3 in different tissues and stress conditions, and generated OsTPP3-overexpressing rice plants. These plants showed a higher tolerance to simulated drought conditions (10% PEG treatment) than wild-type (WT) plants. Reverse-transcription quantitative PCR analysis indicated that transcript levels of genes related to stress responses and abscisic acid biosynthesis were significantly higher in the OsTPP3 overexpressors than in WT plants. These results highlight the importance of OsTPP3 in conferring drought tolerance in rice.


Rice Trehalose OsTPP3 Drought tolerance ABA 



This study was supported by the National Natural Science Foundation of China (31100872) and Genetically Modified Breeding Major Projects (2016ZX08001-004).

Supplementary material

11816_2019_541_MOESM1_ESM.pdf (345 kb)
Supplementary material 1 (PDF 344 kb)


  1. Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659CrossRefPubMedPubMedCentralGoogle Scholar
  2. Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Hofgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J 92:611–623CrossRefPubMedGoogle Scholar
  3. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu R (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903CrossRefPubMedGoogle Scholar
  4. Ge L, Chao D, Shi M, Zhu M, Gao J, Lin H (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201CrossRefPubMedGoogle Scholar
  5. Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13PubMedGoogle Scholar
  6. Han S, Min MK, Lee SY, Lim CW, Bhatnagar N, Lee Y, Shin D, Chung KY, Lee SC, Kim BG, Lee S (2017) Modulation of ABA signaling by altering VxGΦL motif of PP2Cs in Oryza sativa. Mol Plant 10:1190–1205CrossRefPubMedGoogle Scholar
  7. Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hong C, Chao Y, Yang M, Cheng S, Cho S, Kao C (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:103–115CrossRefGoogle Scholar
  9. Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4CrossRefPubMedPubMedCentralGoogle Scholar
  10. Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41:750–756CrossRefPubMedGoogle Scholar
  11. Islam MO, Kato H, Shima S, Tezuka D, Matsui H, Imai R (2019) Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene 685:42–49CrossRefPubMedGoogle Scholar
  12. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li H, Zang B, Deng X, Wang X (2011a) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018CrossRefPubMedGoogle Scholar
  14. Li J, Jiang DG, Zhou H, Li F, Yang J, Hong LF, Fu X, Li ZB, Liu ZL, Li JM, Zhuang CX (2011b) Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice. PLoS One 6:e17444CrossRefPubMedPubMedCentralGoogle Scholar
  15. Liu SC, Jin JQ, Ma JQ, Yao MZ, Ma CL, Li CF, Ding ZT, Chen L (2016) Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS One 11:e0147306CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mu M, Lu X, Wang J, Wang D, Yin Z, Wang S, Fan L, Ye W (2016) Genome-wide Identification and analysis of the stress-resistance function of the TPS (trehalose-6-phosphate synthase) gene family in cotton. BMC Genet 17:54CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nuccio ML, Wu J, Mowers R, Zhou H, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini LM (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869CrossRefPubMedGoogle Scholar
  18. Paul M (2007) Trehalose 6-phosphate. Curr Opin Plant Biol 10:303–309CrossRefPubMedGoogle Scholar
  19. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441CrossRefPubMedGoogle Scholar
  20. Ramon M, Rolland F (2007) Plant development: introducing trehalose metabolism. Trends Plant Sci 12:1360–1385CrossRefGoogle Scholar
  21. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230CrossRefPubMedGoogle Scholar
  22. Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201CrossRefPubMedGoogle Scholar
  23. Smeekens S, Ma JK, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279CrossRefPubMedGoogle Scholar
  24. Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismaill AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124CrossRefPubMedGoogle Scholar
  25. Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP (2019) OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol 221:1369–1386CrossRefPubMedGoogle Scholar
  26. Wang CL, Zhang SC, Qi SD, Zheng CC, Wu CA (2016) Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene 575:206–212CrossRefPubMedGoogle Scholar
  27. Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78CrossRefPubMedGoogle Scholar
  28. Xie D, Wang X, Fu L, Sun J, Zheng W, Li Z (2015) Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing. J Genet 94:55–65CrossRefPubMedGoogle Scholar
  29. Zang B, Li H, Li W, Deng X, Wang X (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522CrossRefPubMedGoogle Scholar
  30. Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J 14:592–602CrossRefPubMedGoogle Scholar
  31. Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y (2017) OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell 43:731–743CrossRefPubMedGoogle Scholar
  32. Zhang C, Peng X, Guo X, Tang G, Sun F, Liu S, Xi Y (2018a) Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass (Panicum virgatum L.). Biotechnol Biofuels 11:91CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhang Q, Song X, Bartels D (2018b) Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses. Plant Sci 270:30–36CrossRefPubMedGoogle Scholar
  34. Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QJ, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX (2014) RNase ZS1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun 5:4884CrossRefPubMedGoogle Scholar
  35. Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  • Dagang Jiang
    • 1
  • Weiting Chen
    • 1
  • Jieer Gao
    • 1
  • Fen Yang
    • 1
  • Chuxiong Zhuang
    • 1
    Email author
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations