Plant Biotechnology Reports

, Volume 13, Issue 1, pp 11–23 | Cite as

Gene delivery into the plant mitochondria via organelle-specific peptides

  • Trevor MacMillan
  • Alicja ZiemienowiczEmail author
  • Fengying Jiang
  • François Eudes
  • Igor Kovalchuk
Original Article


We report a method for genetically engineering the mitochondria of plant cells. Several peptides selected from sorting signal sequences of plant mitochondrial proteins were tested for cell-penetrating, specific organelle-targeting and nucleic acid-binding properties. Selected sequences were named mitochondrial targeting peptides (mTPs). Five of them were used to deliver a linear dsDNA gene construct into AC Ultima spring triticale (X. Triticosecale Wittmack) protoplasts and microspores. The mitochondrial transient expression of the aadA:gfp reporter gene was qualitatively determined with confocal microscopy and quantitatively measured using qRT-PCR. Significant aadA:gfp transcript abundance was reported in protoplasts from deliveries of all five mTPs, while this transcript abundance remained low in microspores. mTP1 transfected microspores were cultured to produce green plantlets and screened for aadA:gfp by endpoint PCR. Targeted gene integration into the mitochondrial genome of eight regenerated haploid triticale lines was confirmed by sequencing. This represents the first report of a successful in vivo transfection of crop plant somatic and germ cells via mitochondrial peptides and a method that can be used to study transient gene expression and to stably deliver genes into the mitochondria of a plant.


Microspores Mitochondria mTPs Protoplasts Transformation Triticale 



We express our appreciation for the contributions made by Bernie Genswein for his computational assistance as well as the Kovalchuk Laboratory, Eric Amundsen and Victoria Hodgson for their technical assistance in the lab.

Supplementary material

11816_2018_502_MOESM1_ESM.docx (20 mb)
Supplementary material 1 (DOCX 20477 KB)


  1. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N (2008) Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 9:42–49. CrossRefGoogle Scholar
  2. Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548. CrossRefGoogle Scholar
  3. Chuah J-A, Yoshizumi T, Kodama Y, Numata K (2015) Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep 5:7751. CrossRefGoogle Scholar
  4. Chuah J-A, Matsugami A, Hayashi F, Numata K (2016) Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. BioMolecules 17:3547–3557. Google Scholar
  5. Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28:801–810. CrossRefGoogle Scholar
  6. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786CrossRefGoogle Scholar
  7. Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the tobacco plastid psbA promoter. Nucl Acids Res 17(1):19–29CrossRefGoogle Scholar
  8. Cotlet M, Goodwin PM, Waldo GS, Werner J (2006) A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. ChemPhysChem 7:250–260. CrossRefGoogle Scholar
  9. Del Gaizo V, Payne RM (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7:720–730CrossRefGoogle Scholar
  10. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. CrossRefGoogle Scholar
  11. Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tissue Org Cult 82:233–241CrossRefGoogle Scholar
  12. Farré J-C, Araya A (2001) Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucl Acids Res 29:2484–2491CrossRefGoogle Scholar
  13. Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC (2003) Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557CrossRefGoogle Scholar
  14. Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Develop Biol 33:130–137CrossRefGoogle Scholar
  15. Frei U, Peiretti EG, Wenzel G (2010) Significance of cytoplasmic DNA in plant breeding. In: Janick J (ed) Plant breeding reviews, vol 23. Wiley, Hoboken, New Jersey, pp 175–210CrossRefGoogle Scholar
  16. Guda C, Guda P, Fahy E, Subramaniam S (2004) MITOPRED: a web server for the prediction of mitochondrial proteins. Nucl Acids Res 32:W372–W374. CrossRefGoogle Scholar
  17. Herce HD, Garcia (2007) Cell penetrating peptides: how do they do it? J Biol Phys 33:345–356. CrossRefGoogle Scholar
  18. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382. CrossRefGoogle Scholar
  19. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. CrossRefGoogle Scholar
  20. Ibrahim N, Handa H, Cosset A, Koulintchenko M, Konstantinov Y, Lightowlers RN, Dietrich A, Weber-Lotfi F (2011) DNA delivery to mitochondria: sequence specificity and energy enhancement. Pharm Res 28:2871–2882. CrossRefGoogle Scholar
  21. José MS-S, Fernando N (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12CrossRefGoogle Scholar
  22. Kanki T, Nakayama H, Sasaki N, Takio K, Alam TI, Hamasaki N, Kang D (2004) Mitochondrial nucleoid and transcription factor A. Ann N Y Acad Sci 1011:61–68CrossRefGoogle Scholar
  23. Keeney PM, Quigley CK, Dunham LD, Papageorge CM, Iyer S, Thomas RR, Schwarz KM, Trimmer PA, Khan SM, Portell FR, Bergquist KE, Bennett JP Jr (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther 20:897–907. CrossRefGoogle Scholar
  24. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915. CrossRefGoogle Scholar
  25. Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254. CrossRefGoogle Scholar
  26. Leon P, Walbot V, Bedinger P (1989) Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucl Acids Res 17:4089–4099CrossRefGoogle Scholar
  27. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) The plant mitochondrial genome - homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc Lond B 319:149–163CrossRefGoogle Scholar
  28. Madani F, Linberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. Google Scholar
  29. Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317. CrossRefGoogle Scholar
  30. Matsushima R, Hamamura Y, Higashiyama T, Arimura S, Tsutsumi N, Sakamoto W (2008) Mitochondrial dynamics in plant male gametophyte visualized by fluorescent live imaging. Plant Cell Physiol 49:1074–1083. CrossRefGoogle Scholar
  31. Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A (2011) Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 39(17):e115. CrossRefGoogle Scholar
  32. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Ann Rev Plant Biol 62:79–104. CrossRefGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35CrossRefGoogle Scholar
  35. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Ann Rev Biochem 76:723–749. CrossRefGoogle Scholar
  36. Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250. CrossRefGoogle Scholar
  37. Placido A, Gagliardi D, Gallerani R, Grienenberger J-M, Maréchal-Drouard L (2005) Fate of a larch unedited tRNA precursor expressed in potato mitochondria. J Biol Chem 280:33573–33579. CrossRefGoogle Scholar
  38. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776. CrossRefGoogle Scholar
  39. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of α-helical amphipathic peptides. J Pep Sci 5:185–194.;2-9 CrossRefGoogle Scholar
  40. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572CrossRefGoogle Scholar
  41. Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H (1995) Transfection of mitochondria—strategy towards a gene-therapy of mitochondrial-DNA diseases. Nucleic Acids Res 23:10–17CrossRefGoogle Scholar
  42. Shen Y, Maupetit J. Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theor Comput 10(10):4745–4758. CrossRefGoogle Scholar
  43. Sieber F, Placido A, El Farouk-Ameqrane S, Duchêne A-M, Maréchal-Drouard L (2011) A protein shuttle system to target RNA into mitochondria. Nucl Acids Res 39:e96. CrossRefGoogle Scholar
  44. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590. CrossRefGoogle Scholar
  45. Vassarotti A, Stroud R, Douglas M (1987) Independent mutations at the amino terminus of a protein act as surrogate signals for mitochondrial import. EMBO J 6:705–711CrossRefGoogle Scholar
  46. Vestweber D, Schatz G (1989) DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338:170–172. CrossRefGoogle Scholar
  47. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017CrossRefGoogle Scholar
  48. von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342CrossRefGoogle Scholar
  49. Yoshizumi T, Oikawa K, Chuah J-A, Kodama Y, Numata K (2018) Selective gene delivery for integrating exogenous DNA into plastid and mitochondrial genomes using peptide-DNA complexes. Biomacromolecules 19:1582–1591. CrossRefGoogle Scholar
  50. Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, Boye SL, Boye SE, Hauswirth WW, Lewin AS, Guy J (2012) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA 109(20):E1238–E1247. CrossRefGoogle Scholar
  51. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690. CrossRefGoogle Scholar
  52. Zhou J, Fan J, Hsieh J-T (2006) Inhibition of mitogen-elicited signal transduction and growth in prostate cancer with a small peptide derived from the functional domain of DOC-2/DAB2 delivered by a unique vehicle. Cancer Res 66:8954–8958. CrossRefGoogle Scholar
  53. Zhou J, Liu L, Chen J (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 9:806–814. CrossRefGoogle Scholar

Copyright information

© Crown 2018
corrected publication 2018

Authors and Affiliations

  1. 1.Agriculture and Agri-Food CanadaLethbridge Research and Development CentreLethbridgeCanada
  2. 2.Department of Biological SciencesUniversity of LethbridgeLethbridgeCanada

Personalised recommendations