Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 1991–1999 | Cite as

Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement

  • Xiaobo WangEmail author
  • Jie Zhou
  • Caojian Jiang
  • Jia WangEmail author
  • Keting Gui
  • Hywel Rhys Thomas
Catalysis, Reaction Engineering


Mn-Ce-Ti catalysts were prepared by different precursors (including manganese nitrate, manganese acetate, and manganese chloride) and used for selective catalytic reduction (SCR) of NO with ammonia. The relationships among the structure, physicochemical properties, and catalytic activity were explored by N2 adsorption/desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microprobe (SEM) and energy dispersive spectroscopy (EDS) techniques. The results show that the different Mn precursors play important roles in the catalytic activity. The Mn-Ce-Ti(N) catalyst synthesized by manganese nitrate precursor exhibits the best catalytic activity, while the Mn-Ce-Ti(C) and Mn-Ce-Ti(Cl) catalyst prepared by manganese acetate and manganese chloride, respectively, exhibit relatively low catalytic activity. The manganese nitrate precursor could promote the specific surface area and redox ability, enhance the amounts of Brønsted and Lewis acid sites, and enrich the surface active species such as Mn4+, Ce3+ and surface chemisorbed oxygen of the catalyst, all of which will contribute to the SCR performance. Moreover, the Mn-Ce-Ti(N) catalyst possesses highly dispersed and uniform surface active species, which will result in the optimal physicochemical properties and superior catalytic performance.


Precursor Effect Active Species Dispersion NH3-SCR NO Abatement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51276039), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB610005), the Jiangsu Government Scholarship for Overseas Studies (JS-2018), and a project funded by Nanjing Xiaozhuang University (2016NXY41).

Supplementary material

11814_2019_410_MOESM1_ESM.pdf (341 kb)
Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement


  1. 1.
    S. Campisi, M. G. Galloni, F. Bossola and A. Gervasini, Catal. Commun., 123, 79 (2019).CrossRefGoogle Scholar
  2. 2.
    X. Zhang, J. Wang, Z. Song, H. Zhao, Y. Xing, M. Zhao, J. Zhao, Z. A. Ma, P. Zhang and N. Tsubaki, Mol. Catal., 463, 1 (2019).CrossRefGoogle Scholar
  3. 3.
    R. T. Guo, X. Sun, J. Liu, W. G. Pan, M. Y. Li, S. M. Liu, P. Sun and S. W. Liu, Appl. Catal. A, 558, 1 (2018).CrossRefGoogle Scholar
  4. 4.
    P. Sun, S. X. Huang, R. T. Guo, M. Y. Li, S. M. Liu, W. G. Pan, Z. G. Fu, S. W. Liu, X. Sun and J. Liu, Appl. Surf. Sci., 447, 479 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Ma, D. Zhang, H. Sun, J. Wu, P. Liang and H. Zhang, Ind. Eng. Chem. Res., 57, 3187 (2018).CrossRefGoogle Scholar
  6. 6.
    J. Liu, R. T. Guo, M. Y. Li, P. Sun, S. M. Liu, W. G. Pan, S. W. Liu and X. Sun, Fuel, 223, 385 (2018).CrossRefGoogle Scholar
  7. 7.
    C. Chen, W. Jia, S. Liu and Y. Cao, J. Mater. Sci., 53, 10001 (2018).CrossRefGoogle Scholar
  8. 8.
    T. Wang, H. Liu, X. Zhang, Y. Guo, Y. Zhang, Y. Wang and B. Sun, Fuel Process. Technol., 158, 199 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Han, Q. Ye, S. Cheng, T. Kang and H. Dai, Catal. Sci. Technol., 7, 703 (2017).CrossRefGoogle Scholar
  10. 10.
    L. J. France, Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang and X. Li, Appl. Catal. B, 206, 203 (2017).CrossRefGoogle Scholar
  11. 11.
    T. Boningari, P. R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C. A. McDonald and P. G. Smirniotis, J. Catal., 325, 145 (2015).CrossRefGoogle Scholar
  12. 12.
    G. Qi and R. T. Yang, J. Catal., 217, 434 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Carja, Y. Kameshima, K. Okada and C. D. Madhusoodana, Appl. Catal. B, 73, 60 (2007).CrossRefGoogle Scholar
  14. 14.
    G. Qi, R. T. Yang and R. Chang, Catal. Lett., 87(1–2), 67 (2003).CrossRefGoogle Scholar
  15. 15.
    D. Fang, J. Xie, H. Hu, H. Yang, F. He and Z. Fu, Chem. Eng. J., 271, 23 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Hwang, S. H. Jo, J. Kim, M. C. Shin, H. H. Chun, H. Park and H. Lee, React. Kinet. Mech Catal., 117, 583 (2015).CrossRefGoogle Scholar
  17. 17.
    D. A. Peña, B.S. Uphade and P. G. Smirniotis, J. Catal., 221, 421 (2004).CrossRefGoogle Scholar
  18. 18.
    W. Xu, G. Zhang, H. Chen, G. Zhang, Y. Han, Y. Chang and P. Gong, Chin. J. Catal., 39, 118 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Lykaki, E. Pachatouridou, E. Iliopoulou, S. A. C. Carabineiro and M. Konsolakis, RSC Adv., 7, 6160 (2017).CrossRefGoogle Scholar
  20. 20.
    X. Chen, S. A. C. Carabineiro, S. S. T. Bastos, P. B. Tavares, J. J. M. Órfão, M. F. R. Pereira and J. L. Figueiredo, Appl. Catal. A, 472, 101 (2014).CrossRefGoogle Scholar
  21. 21.
    S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Órfão, M. F. R. Pereira, J. J. Delgado and J. L. Figueiredo, Catal. Lett., 134, 217(2009).CrossRefGoogle Scholar
  22. 22.
    Q. Li, X. Li, W. Li, L. Zhong, C. Zhang, Q. Fang and G. Chen, Chem. Eng. J., 369, 26 (2019).CrossRefGoogle Scholar
  23. 23.
    D. W. Kwon, K. B. Nam and S. C. Hong, Appl. Catal. A, 497, 160 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang and J. Li, Environ. Sci. Technol., 52, 7064 (2018).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Li, Y. Peng, H. Chang, X. Li, J. C. Crittenden and J. Hao, Front. Environ. Sci. Eng., 10, 413 (2016).CrossRefGoogle Scholar
  26. 26.
    H. Chen, Y. Xia, H. Huang, Y. Gan, X. Tao, C. Liang, J. Luo, R. Fang, J. Zhang, W. Zhang and X. Liu, Chem. Eng. J., 330, 1195 (2017).Google Scholar
  27. 27.
    Z. Song, Q. Zhang, P. Ning, J. Fan, Y. Duan, X. Liu and Z. Huang, J. Taiwan Inst. Chem. Eng., 65, 149 (2016).CrossRefGoogle Scholar
  28. 28.
    Q. Xu, R. Su, L. Cao, Y. Li, C. Yang, Y. Luo, J. Street, P. Jiao and L. Cai, RSC Adv., 7, 48785 (2017).CrossRefGoogle Scholar
  29. 29.
    L. Jiang, Q. Liu, G. Ran, M. Kong, S. Ren, J. Yang and J. Li, Chem. Eng. J., 370, 810 (2019).CrossRefGoogle Scholar
  30. 30.
    N. Wang, W. Qian, W. Chu and F. Wei, Catal. Sci. Technol., 6, 3594 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Zhan, H. Zhang, Y. Zhang, Q. Shi, Y. Li and X. Li, Appl. Catal. B., 203, 199 (2017).PubMedCrossRefGoogle Scholar
  32. 32.
    X. Wang, X. Li, Q. Zhao, W. Sun, M. Tade and S. Liu, Chem. Eng. J., 288, 216 (2016).CrossRefGoogle Scholar
  33. 33.
    W. Mu, J. Zhu, S. Zhang, Y. Guo, L. Su, X. Li and Z. Li, Catal. Sci. Technol., 6, 7532 (2016).CrossRefGoogle Scholar
  34. 34.
    Y. J. Kim, H. J. Kwon, I. Heo, I. S. Nam, B. K. Cho, J. W. Choung, M. S. Cha and G. K. Yeo, Appl. Catal. B, 126, 9 (2012).CrossRefGoogle Scholar
  35. 35.
    J. Huang, H. Huang, L. Liu and H. Jiang, Mol. Catal., 446, 49 (2018).CrossRefGoogle Scholar
  36. 36.
    Y. Shu, H. Sun, X. Quan and S. Chen, J. Phys. Chem. C, 116, 25319 (2012).CrossRefGoogle Scholar
  37. 37.
    L. Zhu, Y. Zeng, S. Zhang, J. Deng and Q. Zhong, J. Environ. Sci. (China), 54, 277 (2017).CrossRefGoogle Scholar
  38. 38.
    Z. Qu, L. Miao, H. Wang and Q. Fu, Chem. Commun. (Camb), 51, 956 (2015).CrossRefGoogle Scholar
  39. 39.
    L. Zhang, D. Zhang, J. Zhang, S. Cai, C. Fang, L. Huang, H. Li, R. Gao and L. Shi, Nanoscale, 5, 9821 (2013).PubMedCrossRefGoogle Scholar
  40. 40.
    W. Zhao, Q. Zhong, Y. Pan and R. Zhang, Chem. Eng. J., 228, 815 (2013).CrossRefGoogle Scholar
  41. 41.
    X. Wang, S. Wu, W. Zou, S. Yu, K. Gui and L. Dong, Chin. J. Catal., 37, 1314 (2016).CrossRefGoogle Scholar
  42. 42.
    B. Shen, H. Ma, C. He and X. Zhang, Fuel Process. Technol., 119, 121 (2014).CrossRefGoogle Scholar
  43. 43.
    H. Wang, S. Cao, Z. Fang, F. Yu, Y. Liu, X. Weng and Z. Wu, Appl. Surf. Sci., 330, 245 (2015).CrossRefGoogle Scholar
  44. 44.
    P. Zhang, C. Shao, X. Li, M. Zhang, X. Zhang, Y. Sun and Y. Liu, J. Hazard. Mater., 237-238, 331 (2012).PubMedCrossRefGoogle Scholar
  45. 45.
    Y. Zhang, W. Guo, L. Wang, M. Song, L. Yang, K. Shen, H. Xu and C. Zhou, Chin. J. Catal., 36, 1701 (2015).CrossRefGoogle Scholar
  46. 46.
    W. Yao, Y. Liu and Z. Wu, Appl. Surf. Sci., 442, 156 (2018).CrossRefGoogle Scholar
  47. 47.
    X. You, Z. Sheng, D. Yu, L. Yang, X. Xiao and S. Wang, Appl. Surf. Sci., 423, 845 (2017).CrossRefGoogle Scholar
  48. 48.
    Y. Shao, B. Ren, H. Jiang, B. Zhou, L. Lv, J. Ren, L. Dong, J. Li and Z. Liu, J. Hazard. Mater., 333, 222 (2017).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Lan, Q. Li, G. Gu, H. Zhang and B. Liu, J. Alloy Compd., 644, 430 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Environmental ScienceNanjing Xiaozhuang UniversityJiangsuChina
  2. 2.Geoenvironmental Research Centre, School of EngineeringCardiff UniversityCardiffUK
  3. 3.College of Chemical EngineeringNanjing Forestry UniversityJiangsuChina
  4. 4.School of Energy and EnvironmentSoutheast UniversityJiangsuChina

Personalised recommendations