Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1826–1838 | Cite as

Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

  • Zaharaddeen N. Garba
  • Wei Xiao
  • Weiming Zhou
  • Ibrahim Lawan
  • Yifan Jiang
  • Mingxi Zhang
  • Zhanhui YuanEmail author
Rapid Communication


Due to increasing interest in the application of perovskites as promising adsorbents, the present study looks at how central composite design (CCD), a subset of response surface methodology (RSM), can statistically play a role in producing optimum lanthanum oxide-cobalt perovskite type nanoparticles (LaCoO3) by using a modified proteic synthesis method. The optimum LaCoO3 produced was tested for its capability in removing methyl orange (MO) and rhodamine B (RhB) dyes from aqueous solution. Calcination temperature and calcination time were optimized with the responses being percentage yield, MO and RhB removal. The best temperature and calcination time obtained were 775 °C and 62 mins, respectively, giving good and appreciable values for the three responses. The resulting optimal LaCoO3 was characterized by Fourier transform infra-red (FTIR), ultraviolet-visible spectrophotometry (UV/vis), scanning electron microscopy (SEM), pH of zero point charge (pHpzc) as well as BET analysis, yielding a mesoporous adsorbent with surface area of 61.130 m2 g−1 as well as 223.55 and 239.45 mg g−1 as the monolayer adsorption capacity values for MO and RhB, respectively. Freundlich model was the best in describing the equilibrium adsorption data with respect to both MO and RhB with the kinetic data for the two dyes both obeying pseudo-second-order kinetics model.


LaCoO3 Perovskite Modified Proteic Method Adsorption Methyl Orange Rhodamine B 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors humbly acknowledge the international funding provided by Fujian Agriculture and Forestry University (KXB16001A) and the Department of Science and Technology of Fujian Province (2017H6003), P.R. China.

Conflict of Interest

The authors have no conflict of interest with regards to the submission and publication of this article.

Supplementary material

11814_2019_400_MOESM1_ESM.pdf (196 kb)
Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology


  1. 1.
    M. E. Argun, D. Güclü and M. Karatas, J. Ind. Eng. Chem., 20, 1079 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Shaban, M. R. Abukhadra, A. A. Parwaz Khan and B. M. Jibali, J. Taiwan Inst. Chem. Eng., 82, 102 (2018).CrossRefGoogle Scholar
  3. 3.
    F. Banat, S. Al-Asheh, R. Al-Ahmad and F. Bni-Khalid, Bioresour. Technol., 98, 3017 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    G. Crini, Bioresour. Technol., 97, 1061 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Brillas and C. A. Martínez-Huitle, Appl. Catal. B, 166–167, 603 (2015).CrossRefGoogle Scholar
  6. 6.
    V. Khandegar and A. K. Saroha, J. Environ. Manage., 128, 949 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    M. Bradha, T. Vijayaraghavan, S. P. Suriyaraj, R. Selvakumar and A. M. Ashok, J. Rare Earths, 33, 160 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Santhi, A. L. Prasad and S. Manonmani, Arab. J. Chem., 7, 494 (2014).CrossRefGoogle Scholar
  9. 9.
    Y.-D. Chen, W.-Q. Chen, B. Huang and M.-J. Huang, Chem. Eng. Res. Des., 91, 1783 (2013).CrossRefGoogle Scholar
  10. 10.
    M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Ali-mohammadi, M. Afsharnia and G. McKay, Chem. Eng. Res. Des., 140, 102 (2018).CrossRefGoogle Scholar
  11. 11.
    Z. N. Garba, F. B. S. Shikin and A. R. Afidah, J. Chem. Eng. Chem. Res., 2, 623 (2015).Google Scholar
  12. 12.
    Z. N. Garba, A. R. Afidah and B. Z. Bello, J. Environ. Chem. Eng., 3, 2892 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Tavakkoli and M. Yazdanbakhsh, Micropor. Mesopor. Mater., 176, 86 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Yazdanbakhsh, H. Tavakkoli and S. M. Hosseini, Desalination, 281, 388 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Algueró, P. Ramos, R. Jiménez, H. Amorín, E. Vila and A. Castro, Acta Mater., 60, 1174 (2012).CrossRefGoogle Scholar
  16. 16.
    C. Moure and O. Peña, Solid State Chem., 43, 148 (2015).Google Scholar
  17. 17.
    R. G. Shetkar and A. V. Salker, J. Mater. Sci. Technol., 26, 1098 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang and Q. Peng, ACS Sustainable Chem. Eng., 6, 1279 (2018).CrossRefGoogle Scholar
  19. 19.
    K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang and Q. Peng, Sci. China Mater., 61, 728 (2018).CrossRefGoogle Scholar
  20. 20.
    R. Guo, R. Wang, J. Yin, T. Jiao, H. Huang, X. Zhao, L. Zhang, Q. Li, J. Zhou and Q. Peng, Nanomater., 9, 127 (2019).CrossRefGoogle Scholar
  21. 21.
    X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou and Q. Peng, ACS Omega, 4, 1897 (2019).PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    A. G. Santos, J. O. Leite, M. J. B. Souza, I. F. Gimenez and A. M. Garrido Pedrosa, Ceram. Int., 44, 5743 (2018).CrossRefGoogle Scholar
  23. 23.
    E. Grabowska, Appl. Catal. B, 186, 97 (2016).CrossRefGoogle Scholar
  24. 24.
    Z. N. Garba and A. R. Afidah, J. Anal. Appl. Pyrol., 107, 306 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Nsor-Atindana, M. Chen, H. D. Goff, F. Zhong, H. R. Sharif and Y. Li, Carbohyd. Polym., 172, 159 (2017).CrossRefGoogle Scholar
  26. 26.
    G. Thoorens, F. Krier, B. Leclercq, B. Carlin and B. Evrard, Int. J. Pharm., 473, 64 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    X. Zhang, Y. Wu, X. Li, X. Meng, H. Shi, Z. Wu and J. Zhang, Korean J. Chem. Eng., 36, 753 (2019).CrossRefGoogle Scholar
  28. 28.
    Z. N. Garba, A. R. Afidah and S. A. Hamza, J. Environ. Chem. Eng., 2, 1423 (2014).CrossRefGoogle Scholar
  29. 29.
    M. A. Ahmad and R. Alrozi, Chem. Eng. J., 165, 883 (2010).CrossRefGoogle Scholar
  30. 30.
    C. W. Oo, M. J. Kassim and A. Pizzi, Ind. Crop. Prod., 30, 152 (2009).CrossRefGoogle Scholar
  31. 31.
    W. S. Wan Ngah, S. Fatinathan and N. A. Yosop, Desalination, 272, 293 (2011).CrossRefGoogle Scholar
  32. 32.
    L. T. Popoola, A. S. Yusuff, O. A. Adesina and M. A. Lala, J. Environ. Sci. Technol., 12, 65 (2019).CrossRefGoogle Scholar
  33. 33.
    R. Baccar, P. Blánquez, J. Bouzid, M. Feki, H. Attiya and M. Sarrà, Fuel Proces. Technol., 106, 408 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Auta and B. H. Hameed, Chem. Eng. J., 175, 233 (2011).CrossRefGoogle Scholar
  35. 35.
    H. Deng, L. Yang, G. Tao and J. Dai, J. Hazard. Mater., 166, 1514 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    S. Deng, Y. Nie, Z. Du, Q. Huang, P. Meng, B. Wang, J. Huang and G. Yu, J. Hazard. Mater., 282, 150 (2015).PubMedCrossRefGoogle Scholar
  37. 37.
    J. N. Sahu, J. Acharya and B. C. Meikap, Bioresour. Technol., 101, 1974 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    M. A. Ahmad and R. Alrozi, Chem. Eng. J., 171, 510 (2010).CrossRefGoogle Scholar
  39. 39.
    M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya and A. Dutta, Bioresour. Technol., 99, 4887 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ç. D. Şentorun-Shalaby, M. G. Uçak-Astarlioǧ Lu, L. Artok and Ç. Sarıcı, Micropor. Mesopor. Mater., 88, 126 (2006).CrossRefGoogle Scholar
  41. 41.
    L. Zhang, B. Zhang, T. Wu, D. Sun and Y. Li, Colloids Surf., A: Physicochem. Eng. Aspects, 484, 118 (2015).CrossRefGoogle Scholar
  42. 42.
    B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpää, Chem. Eng. J., 259, 1 (2015).CrossRefGoogle Scholar
  43. 43.
    T. Soltani and B.-K. Lee, J. Colloid Interface Sci., 481, 168 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    S. Wang, B. Yang and Y. Liu, J. Colloid Interface Sci., 507, 225 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Z.-L. Cheng, Y.-X. Li and Z. Liu, Ecotoxicol. Environ. Safety, 148, 585 (2018).PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Y. Ma, X. Y. Wu and G. K. Zhang, Appl. Catal. B,-Environ., 205, 262 (2017).CrossRefGoogle Scholar
  47. 47.
    J. C. Santos, M. J. B. Souza, M. E. Mesquita and A. M. G. Pedrosa, Sci. Plen., Sci. Plen., 8, 1 (2012).Google Scholar
  48. 48.
    G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today, 41, 207 (1998).CrossRefGoogle Scholar
  49. 49.
    A. G. Margellou, I. T. Papadas, D. E. Petrakis and G. S. Armatas, Mater. Res. Bull., 83, 491 (2016).CrossRefGoogle Scholar
  50. 50.
    Q. Q. Shi, J. Zhang, C. L. Zhang C. Li, B. Zhang, W.W. Hu and J. T. Xu, J. Environ. Sci., 22, 91 (2010).CrossRefGoogle Scholar
  51. 51.
    C. H. C. Tan, S. Sabar and M. H. Hussin, South African J. Chem. Eng., 26, 11 (2018).CrossRefGoogle Scholar
  52. 52.
    A. Benaicha and M. Omari, J. Fundam. Appl. Sci., 10, 132 (2018).CrossRefGoogle Scholar
  53. 53.
    P. W. Atkins, T. L. Overton, J. P. Rourke and M. T. Weller, Shriver and Atkins’ W. H. Freeman and Company, 5th Ed. New York (2010).Google Scholar
  54. 54.
    J. C. Santos, M. J. B. Souza, J. A. C. Ruiz, D. M. A. Melo, M. E. Mesquita and A. M. G. Pedrosa, J. Braz. Chem. Soc., 23, 1858 (2012).CrossRefGoogle Scholar
  55. 55.
    C. J. Jones, Bookman, Porto Alegre, RS (2002).Google Scholar
  56. 56.
    S. Hosseini, M. A. Khan, M. R. Malekbala, W. Cheah and T. S. Y. Choong, Chem. Eng. J., 171, 1124 (2011).CrossRefGoogle Scholar
  57. 57.
    R. Huang, Q. Liu, J. Huo and B. Yang, Arab. J. Chem., 10, 24 (2017).CrossRefGoogle Scholar
  58. 58.
    H. Z. Ma, B. Wang and X. Y. Luo, J. Hazard. Mater., 149, 492 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    S. Khamparia and D. Jaspal, J. Environ. Manage, 183, 786 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    P. K. Satapathy, M. Das and A. K Sahoo, Indian J. Chem. Technol., 21, 257 (2014).Google Scholar
  61. 61.
    M. Mohammadi, A. J. Hassani, A. R. Mohamed and G. D. Najafpour, J. Chem. Eng. Data, 55, 5777 (2010).CrossRefGoogle Scholar
  62. 62.
    N. S. Maurya, A. K. Mittal, P. Cornel and E. Rother, Bioresour. Technol., 97, 512 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    T. Soltani and M. H. Entezari, Chem. Eng. J., 223, 145 (2013).CrossRefGoogle Scholar
  64. 64.
    B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 159, 574 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, Colloids Surf., A: Physicochem. Eng. Aspects, 513, 259 (2017).CrossRefGoogle Scholar
  66. 66.
    N. N. Bahrudin, M. A. Nawi and W. I. N. W. Ismail, Korean J. Chem. Eng., 35, 1450 (2018).CrossRefGoogle Scholar
  67. 67.
    M. N. Anjum, K. M. Zia, L. Zhu, Haroon-ur-Rashid, M. N. Ahmad, M. Zuber and H. Tang, Korean J. Chem. Eng., 31, 2192 (2014).CrossRefGoogle Scholar
  68. 68.
    J. Liu, S. Ma and L. Zang, Appl. Surf. Sci., 265, 393 (2013).CrossRefGoogle Scholar
  69. 69.
    L. Zhai, Z. Bai, Y. Zhu, B. Wang and W. Luo, Chinese J. Chem. Eng., 26, 657 (2018).CrossRefGoogle Scholar
  70. 70.
    M. Sattar, F. Hayeeye, W. Chinpa and O. Sirichote, J. Environ. Chem. Eng., 5, 3780 (2017).CrossRefGoogle Scholar
  71. 71.
    L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 112, 289 (2016).CrossRefGoogle Scholar
  72. 72.
    L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 109, 495 (2016).CrossRefGoogle Scholar
  73. 73.
    L. Mouni, L. Belkhiri, J.-C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani and H. Remini, Appl. Clay Sci., 153, 38 (2018).CrossRefGoogle Scholar
  74. 74.
    P. Saha and S. Chowdhury, Intech, 16, 349 (2011).Google Scholar
  75. 75.
    D. Duranoğlu, A. W. Trochimczuk and U. Beker, Chem. Eng. J., 187, 193 (2012).CrossRefGoogle Scholar
  76. 76.
    S. Jiancheng, L. Renlong, W. Haiping, L. Zuohua, S. Xiaolong and T. Changyuan, J. Taiwan Inst. Chem. Eng., 82, 351 (2018).CrossRefGoogle Scholar
  77. 77.
    G. Z. Kyzas, N. K. Lazaridis and A. C. Mitropoulos, Chem. Eng. J., 189–190, 148 (2012).CrossRefGoogle Scholar
  78. 78.
    P. Liao, Z. Malik Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang and J. Bao, Chem. Eng. J., 195–196, 339 (2012).CrossRefGoogle Scholar
  79. 79.
    O. Hernandez-Ramirez and S. M. Holmes, J. Mater. Chem., 18, 2751 (2008).CrossRefGoogle Scholar
  80. 80.
    N. M. Mahmoodi, B. Hayati, M. Arami and C. Lan, Desalination, 268, 117 (2011).CrossRefGoogle Scholar
  81. 81.
    I. A. W. Tan, A. L. Ahmad and B. H. Hameed, J. Hazar. Mater., 164, 473 (2009).CrossRefGoogle Scholar
  82. 82.
    Y Qiu, Z. Zheng, Z. Zhou and G. D. Sheng, Bioresour. Technol., 100, 5348 (2009).PubMedCrossRefGoogle Scholar
  83. 83.
    Y. Yu, B. N. Murthy, J. G. Shapter, K. T. Constantopoulos, N. H. Voelcker and A. V. Ellis, J. Hazard. Mater., 260, 330 (2013).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Zaharaddeen N. Garba
    • 1
    • 2
  • Wei Xiao
    • 1
  • Weiming Zhou
    • 1
  • Ibrahim Lawan
    • 1
  • Yifan Jiang
    • 1
  • Mingxi Zhang
    • 1
  • Zhanhui Yuan
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringFujian Agriculture and Forestry UniversityFuzhou, Fujian ProvinceChina
  2. 2.Department of ChemistryAhmadu Bello UniversityZariaNigeria

Personalised recommendations