Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2047–2059 | Cite as

A modified non-equilibrium lattice fluid model based on corrected fractional free volume of polymers for gas solubility prediction

  • Abolfazl JomekianEmail author
  • Bahamin Bazooyar
  • Seyed Jalil Poormohammadian
  • Parviz Darvishi
Separation Technology, Thermodynamics
  • 2 Downloads

Abstract

We propose a model based on non-equilibrium lattice fluid (NELF) theory and corrected fractional free volume of polymers to effectively and accurately predict the solubility of gases in different polymers. The method to achieve this purpose is based on the utilization of NELF model infinite dilution solubility coefficient (S0) as the base of predictive calculations. To account for the isolated pore in the polymer matrix in density estimation, a fractional free volume correction factor (β) was introduced in NELF model. The modified NELF model was successfully applied for prediction of solubility of C3H8 and CO2 in polyethylene oxide (PEO) and CO2 in polyethylene terephthalate (PET), isotactic polypropylene (i-PP), polyetherimide (PEI), polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA) with adjustments in β value and depth of diffusion of gases in polymer matrix (ζ) at different pressures and temperatures. This work involves multi-objective optimization using genetic algorithm of MATLAB toolbox with adjusted settings. It applies to find the optimum temperature at which the minimum standard deviation of β for different gas-polymer systems is obtained. β showed the same trend of change with temperature as the constrained pressure imposed on the amorphous phase in semi-crystalline polymers. A cubic correlation for standard deviation for β versus temperature was obtained which was able to anticipate the changing trend of β at different temperatures. The chi-square test results verified that compared with original NELF model, a more accurate model for prediction of gas solubilities in polymers has been proposed.

Keywords

NELF Model Solubility Prediction Infinite Dilution Solubility Fractional Free Volume Correction Factor Chi-square Test 

Nomenclature

English Letters

A

total Helmholtz free energy [J]

aNE

Helmholtz free energy density at nonequilibrium state [J mol−1]

N

numbers of moles of penetrants

R

Universal gas constant [J mol−1 K−1]

T*

characteristic temperature of the mixture of gases [K]

\({\rm{T}}_i^*\)

characteristic temperature of pure component i [K]

\(\tilde{\rm{T}}\)

dimensionless temperature

r

molar average number of lattice sites occupied by a molecule in the mixture

ri

molar number of lattice sites occupied in the mixture by molecules of species i

\({\rm{r}}_i^0\)

number of lattice sites occupied by a mole of pure component i

\({\rm{v}}_i^*\)

volume occupied by a mole of lattice sites of pure substance [m3 mol−1]

S0

infinite dilution solubility coefficient [m3(STP) m−3 Pa]

\({\rm{p}}_i^*\)

characteristic pressure of pure component i [Pa]

\({\rm{\Delta p}}_{i,j}^*\)

pressure binary interaction parameter between penetrants i and j [Pa]

C1

concentration of penetrant in matrix of polymer [mol m−3]

Mi

molecular weight of penetrant (i=1) or polymer (i=2) [kg mol−1]

j1

molecular flux of penetrant in polymer [mol m−2 s−1]

D12

diffusion coefficient of penetrant in polymer [m2 s−1]

S

diffusion coefficient of solute in polymer [kgsolute·kgpolymer−1]

r12

molecular separation at collision [nm]

k

Boltzmann constant

f

fractional free volume [FFV]

z

the direction of diffusion [µm]

Greek Letters

\(\widetilde\rho \)

dimensionless density [kg m−3]

ρ*

lattice fluid characteristic density [kg m−3]

\(\rho _i^*\)

characteristic density of pure component i [kg m−3]

\(\rho _2^0\)

density of polymer in very low pressures [kg m−3]

ρi

density of penetrant molecule (i=1), density of polymer (i=2) [kg m−3]

ϕi

volume fraction of component i

\(\mu _i^{NE}\)

non-equilibrium chemical potential of component i [J mol−1]

Ψ

binary adjustable parameter

ϕ12

energy of molecular attraction [kg m−2 s−2]

β

fractional free volume correction factor

ζ

depth of diffusion of penetrant in polymer matrix [µm]

χ2

chi-squarevalue

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

  1. 1.
    E. Nezhadmoghadam, M. P. Chenar, M. Omidkhah, A. Nezhad-moghadam and R. Abedini, Korean J. Chem. Eng., 35, 526 (2018).CrossRefGoogle Scholar
  2. 2.
    A. R. Kamble, C. M. Patel and Z. Murthy, Sep. Sci. Technol., 54, 311 (2019).CrossRefGoogle Scholar
  3. 3.
    M. H. Nematollahi, S. Babaei and R. Abedini, Korean J. Chem. Eng., 36, 763 (2019).CrossRefGoogle Scholar
  4. 4.
    E. Jiaqiang X. Zhao, Y. Deng and H. Zhu, Appl. Therm. Eng., 93, 166 (2016).CrossRefGoogle Scholar
  5. 5.
    C. Wang, X. Sun and J. Zhang, Appl. Therm. Eng., 156, 562 (2019).CrossRefGoogle Scholar
  6. 6.
    E. Shi, X. Zang, C. Jiang and M. Mohammadpourfard, J. Therm. Anal Calorim. (2019),  https://doi.org/10.1007/s10973-019-08556-3.
  7. 7.
    E. Shi, F. Jabari, A. Anvari-Moghaddam, M. Mohammadpourfard and B. Mohammadi-Ivatloo, Appl. Sci., 9, 1925 (2019).CrossRefGoogle Scholar
  8. 8.
    E. Jiaqiang, X. Zhao, H. Liu, J. Chen, W. Zuo and Q. Peng, Appl. Energy, 175, 218 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Dashti, H. R. Harami and M. Rezakazemi, Int. J. Hydrogen Energy, 43, 6614 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Maghami, A. Mehrabani-Zeinabad, M. Sadeghi, J. Sánchez-Laínez, B. Zornoza, C. Téllez and J. Coronas, Chem. Eng. Sci., 205, 58 (2019).CrossRefGoogle Scholar
  11. 11.
    B. Chen, Y. Dai, X. Ruan, Y. Xi and G. He, Front. Chem. Sci. Eng., 12, 296 (2018).CrossRefGoogle Scholar
  12. 12.
    M. A. Khansary, Korean J. Chem. Eng., 33, 1402 (2016).CrossRefGoogle Scholar
  13. 13.
    E. Toni, M. Minelli and G. C. Sarti, Fluid Phase Equilib., 455, 54 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Rezakazemi and S. Shirazian, Int. J. Hydrogen Energy, 43, 22357 (2018).CrossRefGoogle Scholar
  15. 15.
    K. von Konigslow, C. B. Park and R. B. Thompson, Soft Matter, 14, 4603 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    E. Ricci, A. E. Gemeda, N. Du, N. Li, M. G. De Angelis, M. D. Guiver and G. C. Sarti, J. Membr. Sci., 585, 136 (2019).CrossRefGoogle Scholar
  17. 17.
    L. Liu and S. E. Kentish, J. Membr. Sci., 553, 63 (2018).CrossRefGoogle Scholar
  18. 18.
    Y. Lou, P. Hao and G. Lipscomb, J. Membr. Sci., 455, 247 (2014).CrossRefGoogle Scholar
  19. 19.
    F. Doghieri and G. C. Sarti, Macromolecules, 29, 7885 (1996).CrossRefGoogle Scholar
  20. 20.
    M. De Angelis, G. Sarti and F. Doghieri, J. Membr. Sci., 289, 106 (2007).CrossRefGoogle Scholar
  21. 21.
    M. Minelli and M. G. De Angelis, Fluid Phase Equilib., 367, 173 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Minelli, J. Membr. Sci., 451, 305 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Galizia, Z. P. Smith, G. C. Sarti, B. D. Freeman and D. R. Paul, J. Membr. Sci., 475, 110 (2015).CrossRefGoogle Scholar
  24. 24.
    M. Minelli and F. Doghieri, Fluid Phase Equilib., 381, 1 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Jomekian, R.M. Behbahani, T. Mohammadi and A. Kargari, Korean J. Chem. Eng., 34, 440 (2017).CrossRefGoogle Scholar
  26. 26.
    H. Sanaeepur, S. Mashhadikhan, G. Mardassi, A. E. Amooghin, B. Van der Bruggen and A. Moghadassi, Korean J. Chem. Eng., 36, 1339 (2019).CrossRefGoogle Scholar
  27. 27.
    S.-A. Hoseinpour, A. Barati-Harooni, P. Nadali, A. Mohebbi, A. Najafi-Marghmaleki, A. Tatar and A. Bahadori, J. Chemom., 32, e2956 (2018).CrossRefGoogle Scholar
  28. 28.
    N. A. Menad, A. Hemmati-Sarapardeh, A. Varamesh and S. Shamshirband, J. CO2 Util, 33, 83 (2019).CrossRefGoogle Scholar
  29. 29.
    A. Jomekian and S. J. Poormohammadian, Fluid Phase Equilib., 500, 112261 (2019).CrossRefGoogle Scholar
  30. 30.
    M. Minelli, S. Campagnoli, M. De Angelis, F. Doghieri and G. Sarti, Macromolecules, 44, 4852 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Minelli, M. G. De Angelis, M. Giacinti Baschetti, F. Doghieri, G. C. Sarti, C. P. Ribeiro Jr. and B. D. Freeman, Ind. Eng. Chem. Res., 54, 1142 (2015).CrossRefGoogle Scholar
  32. 32.
    F. Doghieri and G. C. Sarti, J. Membr. Sci., 147, 73 (1998).CrossRefGoogle Scholar
  33. 33.
    S. N. Shoghl, A. Raisi and A. Aroujalian, RSC Adv., 6, 57683 (2016).CrossRefGoogle Scholar
  34. 34.
    S. N. Shoghl, A. Raisi and A. Aroujalian, RSC Adv., 5, 38223 (2015).CrossRefGoogle Scholar
  35. 35.
    M. Minelli and F. Doghieri, Ind. Eng. Chem. Res., 51, 16505 (2012).CrossRefGoogle Scholar
  36. 36.
    V. Wiesmet, E. Weidner, S. Behme, G. Sadowski and W. Arlt, J. Supercrit. Fluids, 17, 1 (2000).CrossRefGoogle Scholar
  37. 37.
    S. Zid, M. Zinet and E. Espuche, J. Polym. Sci., Part B: Polym. Phys., 56, 621 (2018).CrossRefGoogle Scholar
  38. 38.
    A. Thran, G. Kroll and F. Faupel, J. Polym. Sci., Part B: Polym. Phys., 37, 3344 (1999).CrossRefGoogle Scholar
  39. 39.
    W. Koros and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys., 16, 1947 (1978).Google Scholar
  40. 40.
    W. Koros and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys., 16, 2171 (1978).Google Scholar
  41. 41.
    W. Koros and D. R. Paul, Polym. Eng. Sci., 20, 14 (1980).CrossRefGoogle Scholar
  42. 42.
    W. Koros, D. R. Paul, M. Fujii, H. Hopfenberg and V. Stannett, J. Appl. Polym. Sci., 21, 2899 (1977).CrossRefGoogle Scholar
  43. 43.
    T. Xia, Z. Xi, T. Liu and L. Zhao, Chem. Eng. Sci., 168, 124 (2017).CrossRefGoogle Scholar
  44. 44.
    D.-c. Li, T. Liu, L. Zhao and W.-k. Yuan, Ind. Eng. Chem. Res., 48, 7117 (2009).CrossRefGoogle Scholar
  45. 45.
    Z. Lei, H. Ohyabu, Y. Sato, H. Inomata and R. L. Smith Jr., J. Supercrit. Fluids, 40, 452 (2007).CrossRefGoogle Scholar
  46. 46.
    G. Li, F. Gunkel, J. Wang, C. Park and V. Altstädt, J. Appl. Polym. Sci., 103, 2945 (2007).CrossRefGoogle Scholar
  47. 47.
    J. Chen, T. Liu, L. Zhao and W-k. Yuan, Thermochim. Acta, 530, 79 (2012).CrossRefGoogle Scholar
  48. 48.
    M. M. López-González, V. Compan, E. Saiz, E. Riande and J. Guzman, J. Membr. Sci., 253, 175 (2005).CrossRefGoogle Scholar
  49. 49.
    K. Simons, K. Nijmeijer, J. G. Sala, H. van der Werf, N. E. Benes, T. J. Dingemans and M. Wessling, Polymer, 51, 3907 (2010).CrossRefGoogle Scholar
  50. 50.
    M. Wessling, M. L. Lopez and H. Strathmann, Sep. Purif. Technol., 24, 223 (2001).CrossRefGoogle Scholar
  51. 51.
    W.J. Koros, G.N. Smith and V. Stannett, J. Appl. Polym. Sci., 26, 159 (1981).CrossRefGoogle Scholar
  52. 52.
    Z. Lu, Y. Pan, X. Liu, G. Zheng, D.W. Schubert and C. Liu, Mater. Lett., 221, 62 (2018).CrossRefGoogle Scholar
  53. 53.
    Y. Pan, X. Liu, J. Kaschta, X. Hao, C. Liu and D. W. Schubert, Polymer, 113, 34 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Abolfazl Jomekian
    • 1
    Email author
  • Bahamin Bazooyar
    • 2
  • Seyed Jalil Poormohammadian
    • 3
  • Parviz Darvishi
    • 3
  1. 1.Esfarayen University of TechnologyEsfarayenIran
  2. 2.Department of Design and Engineering, School of Creative Arts and EngineeringStaffordshire UniversityStoke-on-TrentUK
  3. 3.Chemical Engineering Department, School of EngineeringYasouj UniversityYasoujIran

Personalised recommendations