Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2000–2007 | Cite as

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate

  • Pravin Sukharaj Bhandari
  • Parag Ratnakar GogateEmail author
Environmental Engineering


Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate (SDBS) was investigated, focusing on establishing the best conditions for maximum degradation. The study involving different persulfate based oxidants, such as potassium persulfate (KPS), ammonium persulfate (NH3PS) and sodium persulfate (NaPS), revealed that the extent of degradation as 98.3, 82.2 and 68.2% was obtained for the use of KPS, NH3PS and NaPS, respectively. The study of the effect of SDBS concentration (25–100 mg/L), oxidant loading (0–3 g/L) and power (140–350 W) established that degradation decreased with an increase in the operating parameter beyond the optimum condition. Under optimized conditions using potassium persulfate (KPS) as an oxidant, 51.6% and 98.3% degradation of 50 mg/L SDBS solution was obtained by conventional and microwave assisted chemical oxidation approach, respectively, under optimized conditions of power, oxidant loading, volume and time maintained as 280 W, 2 g/L, 250 mL and 28 min, respectively. Extending the conventional approach for 120 min resulted in degradation of 92.5%, which establishes that microwave helps in reducing the treatment time significantly. Kinetic study revealed pseudo-first-order behavior for degradation of SDBS. Energy per order (EEO) for conventional and microwave assisted degradation was observed to be 840 and 317.33 kWh/m3, respectively. Overall, microwave assisted persulfate induced degradation of SDBS has been established to be promising method giving rapid degradation and better economics.


Microwave Assisted Degradation Advanced Oxidation Process Anionic Surfactant Persulfate Based Oxidant Sulfate Radical Thermal Activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge University Grant Commission for assistance under UGC-NRC, at the Institute of Chemical Technology, Mumbai, Maharashtra, India.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    C. Edser, Focus Surfactants, 2018, 1 (2018).Google Scholar
  2. 2.
    J. Beltrán-Heredia, J. Sánchez-Martín and C. Solera-Hernández, Chem. Eng. J., 153, 56 (2009).CrossRefGoogle Scholar
  3. 3.
    E. Yüksel, I. A. Şengil and M. Özacar, Chem. Eng. J., 152, 347 (2009).CrossRefGoogle Scholar
  4. 4.
    S. R. Taffarel and J. Rubio, Miner. Eng., 23, 771 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Sanchez, M. J. Rivero and I. Ortiz, Appl. Catal. B Environ., 101, 515 (2011).CrossRefGoogle Scholar
  6. 6.
    S. H. Wu and P. Pendleton, J. Colloid Interface Sci., 243, 306 (2001).CrossRefGoogle Scholar
  7. 7.
    G.-G. Ying, Environ. Int., 32, 417 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    P. S. Bhandari and P. R. Gogate, J. Mol. Liq., 252, 495 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Gupta, A. Pal, P. K. Ghosh and M. Bandyopadhyay, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 38, 381 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Manousaki, E. Psillakis, N. Kalogerakis and D. Mantzavinos, Water Res., 38, 3751 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    A. K. Mungray and P. Kumar, J. Hazard. Mater., 160, 362 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    M. J. Scott and M. N. Jones, Biochim. Biophys. Acta, 1508, 235 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    W. de Wolf and T. Feijtel, Chemosphere, 36, 1319 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    D. A. Patterson, I. S. Metcalfe, F. Xiong and A. G. Livingston, Ind. Eng. Chem. Res., 40, 5507 (2001).CrossRefGoogle Scholar
  15. 15.
    U. Merrettig-Bruns and E. Jelen, Materials (Basel), 2, 181 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Adak, M. Bandopadhyay and A. Pal, Colloids Surf. A: Physicochem. Eng. Asp., 254, 165 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Adak, M. Bandopadhyay and A. Pal, J. Env. Sci. Health Part A, 40, 167 (2005).CrossRefGoogle Scholar
  18. 18.
    P. D. Purakayastha, A. Pal and M. Bandyopadhyay, Indian J. Chem. Technol., 12, 281 (2005).Google Scholar
  19. 19.
    W. Kong, B. Wang, H. Ma and L. Gu, J. Hazard. Mater., 137, 1532 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    A. S. Koparal, E. Önder and Ü.B. Ögütveren, Desalination, 197, 262 (2006).CrossRefGoogle Scholar
  21. 21.
    M. A. Abu-Hassan, J.K. Kim, I. S. Metcalfe and D. Mantzavinos, Chemosphere, 62, 749 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    R. A. Kimerle and R. D. Swisher, Water Res., 11, 31 (1977).CrossRefGoogle Scholar
  23. 23.
    F. Hosseini, F. Malekzadeh, N. Amirmozafari and N. Ghaemi, Int. J. Environ. Sci. Technol., 4, 127 (2007).CrossRefGoogle Scholar
  24. 24.
    H. Farzaneh, M. Fereidon, A. Noor and G. Naser, J. Biotechnol., 9, 55 (2010).CrossRefGoogle Scholar
  25. 25.
    N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Alinsafi, M. Khemis, M. N. Pons, J. P. Leclerc, A. Yaacoubi, A. Benhammou and A. Nejmeddine, Chem. Eng. Process. Process. Intensif, 44, 461 (2005).CrossRefGoogle Scholar
  27. 27.
    F. Ríos, M. Olak-Kucharczyk, M. Gmurek and S. Ledakowicz, Arch. Environ. Prot., 43, 20 (2017).CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, D. Xu, M. Shen, D. Wu, Z. Chen, X. Ji, F. Li and Y. Xu, Desalination, 249, 1022 (2009).CrossRefGoogle Scholar
  29. 29.
    I. M. Banat, P. Nigam, D. Singh and R. Marchant, Bioresour. Technol., 58, 217 (1996).CrossRefGoogle Scholar
  30. 30.
    N. N. Patil and S. R. Shukla, J. Water Process. Eng., 7, 314 (2015).CrossRefGoogle Scholar
  31. 31.
    P. R. Gogate and A. B. Pandit, Adv. Environ. Res., 8, 501 (2004).CrossRefGoogle Scholar
  32. 32.
    K. Ikehata and M. G. El-Din, Ozone Sci. Eng., 26, 327 (2004).CrossRefGoogle Scholar
  33. 33.
    W. H. Glaze, J. W. Kang and D. H. Chapin, Ozone Sci. Eng. J. Int. Ozone Assoc., 9, 335 (1987).CrossRefGoogle Scholar
  34. 34.
    U. M. Nascimento and E. B. Azevedo, J. Environ. Sci. Heal Part A Toxic/Hazardous Subst. Environ. Eng., 48, 1056 (2013).CrossRefGoogle Scholar
  35. 35.
    M. Ashokkumar, T. Niblett, L. Tantiongco and F. Grieser, Aust. J. Chem., 56, 1045 (2003).CrossRefGoogle Scholar
  36. 36.
    M. H. Dehghani, A. Zarei and M. Yousefi, MethodsX, 6, 805 (2019).PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).PubMedCrossRefGoogle Scholar
  38. 38.
    L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001).CrossRefGoogle Scholar
  39. 39.
    M. B. Gawande, S. N. Shelke, R. Zboril and R. S. Varma, Acc Chem. Res., 47, 1338 (2014).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Qi, X. Liu, C. Lin, X. Zhang, J. Ma, H. Tan and W. Ye, Chem. Eng. J., 249, 6 (2014).CrossRefGoogle Scholar
  41. 41.
    Y. Kim and J. Ahn, Int. Biodeterior. Biodegrad., 95, 208 (2014).CrossRefGoogle Scholar
  42. 42.
    J. Jacob, L. H. L. Chia and F. Y. C. Boey, J. Mater. Sci., 30, 5321 (1995).CrossRefGoogle Scholar
  43. 43.
    Z. Zhang, Y. Deng, M. Shen, W. Han, Z. Chen, D. Xu and X. Ji, Water Sci. Technol., 63, 424 (2011).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R. L. Siegrist and P. L. Bjerg, Crit. Rev. Environ. Sci. Technol., 40, 55 (2010).CrossRefGoogle Scholar
  45. 45.
    S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos, Chemosphere, 101, 86 (2014).PubMedCrossRefGoogle Scholar
  46. 46.
    Y. Ji, Y. Fan, K. Liu, D. Kong and J. Lu, Water Res., 87, 1 (2015).PubMedCrossRefGoogle Scholar
  47. 47.
    Y.Q. Zhang, X.Z. Du and W.L. Huang, Chinese Chem. Lett., 22, 358 (2011).CrossRefGoogle Scholar
  48. 48.
    M. Nüchter, U. Müller, B. Ondruschka, A. Tied and W. Lautenschläger, Chem. Eng. Technol., 26, 1207 (2003).CrossRefGoogle Scholar
  49. 49.
    F. Langa, P. de la Cruz, A. de la Hoz, A. Díaz-Ortiz and E. Díez-Barra, Contemp. Org. Synth., 4, 373 (1997).CrossRefGoogle Scholar
  50. 50.
    L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Veksha, P. Pandya and J. M. Hill, J. Environ. Chem. Eng., 3, 1452 (2015).CrossRefGoogle Scholar
  52. 52.
    A. de la Hoz, A. Díaz-Ortiz and A. Moreno, J. Microw. Power Electromagn Energy, 41, 44 (2007).PubMedGoogle Scholar
  53. 53.
    R. J. Jachuck, D. K. Selvaraj and R. S. Varma, Green Chem., 8, 29 (2006).CrossRefGoogle Scholar
  54. 54.
    J. Méndez-Díaz, M. Sanchez-Polo, J. Rivera-Utrila and M. I. Bautista-Toledo, Water Res., 43, 1621 (2009).PubMedCrossRefGoogle Scholar
  55. 55.
    J. Rivera-Utrilla, J. Méndez-Díaz, M. Sanchez-Polo, M. A. Ferro-Garcia and I. Baustista-Toledo, Water Res., 40, 1717 (2006).PubMedCrossRefGoogle Scholar
  56. 56.
    Y. Deng and C.M. Ezyske, Water Res., 45, 6189 (2011).PubMedCrossRefGoogle Scholar
  57. 57.
    J. Méndez-Díaz, M. Sánchez-Polo, J. Rivera-Utrilla, S. Canonica and U. von Gunten, Chem. Eng. J., 163, 300 (2010).CrossRefGoogle Scholar
  58. 58.
    D. Zhou, H. Zhang and L. Chen, J. Chem. Technol. Biotechnol., 90, 775 (2015).CrossRefGoogle Scholar
  59. 59.
    C. Liang and H. Su, Ind. Eng. Chem. Res., 48, 5558 (2009).CrossRefGoogle Scholar
  60. 60.
    Y. Liu, X. He, Y. Fu and D.D. Dionysiou, J. Hazard. Mater., 305, 229 (2016).PubMedCrossRefGoogle Scholar
  61. 61.
    H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa and R. Arakawa, Environ. Sci. Technol., 39, 2383 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    C. S. Liu, C. P. Higgins, F. Wang and K. Shih, Sep. Purif. Technol., 91, 46 (2012).CrossRefGoogle Scholar
  63. 63.
    L. Bo, X. Quan, S. Chen, H. Zhao and Y. Zhao, Water Res., 40, 3061 (2006).PubMedCrossRefGoogle Scholar
  64. 64.
    J. Tierney and J. Westman, Tetrahedron, 57, 9225 (2001).CrossRefGoogle Scholar
  65. 65.
    N. Remya and J. Lin, Chem. Eng. J., 166, 797 (2011).CrossRefGoogle Scholar
  66. 66.
    N. Daneshvar, A. Aleboyeh and A. R. Khataee, Chemosphere, 59, 761 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Pravin Sukharaj Bhandari
    • 1
  • Parag Ratnakar Gogate
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations