Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1940–1947 | Cite as

Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors

  • Seul Lee
  • Bolormaa Gendensuren
  • Boyeon Kim
  • Sangik Jeon
  • Young-Hyun Cho
  • Taewon Kim
  • Eun-Suok OhEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


The electrochemical properties of two water-emulsified polymers, styrene-butadiene rubber, and polytetrafluoroethylene, on activated carbon electrochemical capacitors were systematically compared. All electrodes were fabricated with different ratios of styrene-butadiene rubber and polytetrafluoroethylene: 4 : 0, 3 : 1, 2 : 2, and 1 : 3. A good dispersion of styrene-butadiene rubber nanoparticles maintains mesopores in activated carbon, whereas an increase in polytetrafluoroethylene binder content in the electrodes reduces mesoporous surface area significantly due to the lump polytetrafluoroethylene structure coagulated by smashed particles in water. The relatively strong adhesion of the styrene-butadiene rubber binder also leads to better cyclability for extremely long cycles and the rate capability with various current densities at room temperature. At a high temperature of 60 °C, however, the electrodes containing polytetrafluoroethylene binder showed comparable high specific capacitance due to the high thermal stability of polytetrafluoroethylene.


Electrochemical Double-layer Capacitor Emulsified Binder Styrene-butadiene Rubber Polytetrafluoroethylene Activated Carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Regional Specialized Industry Development Program” supervised by the Korea Institute for Advancement of Technology (KIAT) (R0005989).

Supplementary material

11814_2019_388_MOESM1_ESM.pdf (108 kb)
Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors


  1. 1.
    K. Cendrowski, W. Kukulka, T. Kedzierski, S. Zhang and E. Mijowska, Nanomaterials, 8, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    S. Parulekar, S. S. R. M. Holmukhe and P. B. Karandikar, Int. J. Eng. Tech., 7, 313 (2018).CrossRefGoogle Scholar
  3. 3.
    Y. Gao, Nanoscale Res. Lett., 12, 387 (2017).CrossRefGoogle Scholar
  4. 4.
    Y. Jiao, C. Qu, B. Zhao, Z. Liang, H. Chang, S. Kumar, R. Zou, M. Liu and K. S. Walton, ACS Appl. Energy Mater., 2, 5029 (2019).CrossRefGoogle Scholar
  5. 5.
    Q. Abbas, D. Pajak, E. Frąckowiak and F. Béguin, Electrochim. Acta, 140, 132 (2014).CrossRefGoogle Scholar
  6. 6.
    K.-C. Tsay, L. Zhang and J. Zhang, Electrochim. Acta, 60, 428 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Paul, K. S. Choi, D. J. Lee, S. Sudhagar and Y. S. Kang, Electrochim. Acta, 78, 649 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Aslan, D. Weingarth, N. Jäckel, J. S. Atchison, I. Grobelsek and V. Presser, J. Power Sources, 266, 374 (2014).CrossRefGoogle Scholar
  9. 9.
    K. Lia, N. Maffei and E. Entchev, J. Solid State Electrochem., 18, 2535 (2014).Google Scholar
  10. 10.
    A. Eftekhari, L. Li and Y. Yang, J. Power Sources, 347, 86 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Han and L. Dai, Macromol. Chem. Phys., 220, 1800355 (2019).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Y. Ding, X. Guo and G. Yu, Nano Res., 12, 1978 (2019).CrossRefGoogle Scholar
  13. 13.
    F. Jeschull, D. Brandell, M. Wohlfahrt-Mehrens and M. Memm, Energy Technol., 5, 2108 (2017).CrossRefGoogle Scholar
  14. 14.
    R. Wang, L. Feng, W. Yang, Y. Zhang, Y. Zhang, W. Bai, B. Liu, W. Zhang, Y. Chuan, Z. Zheng and H. Guan, Nanoscale Res. Lett., 12, 575 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Chauque, F. Y. Oliva, O. R. Cámara and R. M. Torresi, J. Solid State Electrochem., 22, 3589 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. Bai, R. B. Rakhi, W. Chen and H. N. Alshareef, J. Power Sources, 233, 313 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Xu, B. Gao, H. Cao, X. Chen, L. Yu, K. Wu, L. Sun, X. Peng and J. Fu, J. Nanomaterials, 2014, 1 (2014).Google Scholar
  18. 18.
    C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012).CrossRefGoogle Scholar
  19. 19.
    C.-M. Wang, C.-Y. Wen, Y.-C. Chen, J.-Y. Chang, C.-W. Ho, K.-S. Kao, W-C. Shih, C.-M. Chiu and Y.-A. Shen, in The 3 rdInternational Conference on Industrial Application Engineering 2015 (ICI-AE2015) (2015).Google Scholar
  20. 20.
    W.-C. Liao, F.-S. Liao, C.-T. Tsai and Y.-P. Yang, China Steel Technical Report, 25, 36 (2012).Google Scholar
  21. 21.
    I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011).CrossRefGoogle Scholar
  22. 22.
    X. Pan, G. Ren, M. N. F. Hoque, S. Bayne, K. Zhu and Z. Fan, Adv. Mater. Interfaces, 1, 1400398 (2014).CrossRefGoogle Scholar
  23. 23.
    H. Wu, Z. Lou, H. Yang and G. Shen, Nanoscale, 7, 1921 (2015).CrossRefGoogle Scholar
  24. 24.
    P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A. A. Narasimulu, C. D. Montemagno, L. Yu and J. Luo, ACS Appl. Mater. Interfaces, 10, 5880 (2018).CrossRefGoogle Scholar
  25. 25.
    J. W. Nicholson, The Chemistry of Polymers, Royal Society of Chemistry (2012).Google Scholar
  26. 26.
    M. Conte, B. Pinedo and A. Igartua, Tribol. Int., 74, 1 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Seul Lee
    • 1
  • Bolormaa Gendensuren
    • 1
  • Boyeon Kim
    • 2
  • Sangik Jeon
    • 2
  • Young-Hyun Cho
    • 3
  • Taewon Kim
    • 3
  • Eun-Suok Oh
    • 1
    Email author
  1. 1.School of Chemical EngineeringUniversity of UlsanUlsanKorea
  2. 2.Solution Advanced Technology Co. Ltd.Siheung-si, Gyeonggi-doKorea
  3. 3.Ulsan TechnoparkUlsanKorea

Personalised recommendations