Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1780–1784 | Cite as

Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil

  • Su-Jin Min
  • Hye-Bin Kim
  • Seon-Hee Kim
  • Kitae BaekEmail author
Rapid Communication
  • 8 Downloads

Abstract

Korea Ministry of Environment regulates the soil quality based on the pseudo-total content of metals extracted by aqua-regia, and the concentration of metals has been used in the risk assessment of the contaminated site. The pseudo-total content of metals can be accepted conservatively as a potentially risky concentration of metals in the soil. However, only some portion of metals in the soil are absorbed by plants, animals, and human beings, and the pseudo-total content used in the risk assessment tend to overestimate the risk of metal contamination. Therefore, the pseudo-total content does not reflect the real risk of the contamination. Bioavailability and bioaccessibility can be alternatives for the pseudo-total content to estimate the reasonable risk. Bioaccessible concentration can be analyzed as in-vitro by the amounts of metals extracted in the gastrointestinal situation, and the bioaccessible concentration is the maximum amount of metals to be absorbed. The bioaccessible concentration of As was evaluated, compared with the pseudo-total concentration of As, and the correlation between the concentration of As and physicochemical properties of soil was analyzed. The bioaccessible concentration can be estimated by the labile fractions of As, and Si, Al, and Mn content decrease the bioaccessible concentration of As.

Keywords

Bioaccessibility Arsenic Fractionation Risk Assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by Chonbuk National University.

References

  1. 1.
    J. S. Yang, J. M. Hwang, K. Baek and M. J. Kwon, Korean Chem. Eng. Res., 51, 745 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Son, J. G. Kim, S. Hyun and K. Cho, Environ. Pollut., 249, 1081 (2019).CrossRefGoogle Scholar
  3. 3.
    K. Yang, J. Im, S. Jeong and K. Nam, Environ. Res., 137, 78 (2015).CrossRefGoogle Scholar
  4. 4.
    K. J. Kim, J. C. Yoo, J. S. Yang and K. Baek, Korean Chem. Eng. Res., 51, 733 (2013).CrossRefGoogle Scholar
  5. 5.
    X. S. Luo, S. Yu and X. D. Li, Appl. Geochem., 27, 995 (2012).CrossRefGoogle Scholar
  6. 6.
    L. J. Ehlers and R. G. Luthy, Environ. Sci. Technol., 37, 295A (2003).CrossRefGoogle Scholar
  7. 7.
    Y.-H. Park, Environ. Policy, 25, 183 (2017).Google Scholar
  8. 8.
    M.-H. Cho, D.-H. Kim and K. Baek, J. Soil Groundwater Environ., 22, 48 (2017).Google Scholar
  9. 9.
    J. McGeer, G. Henningsen, R. Nanno, N. Fisher, K. Sappington and J. Drexler, Issue paper on the bioavailability and bioaccumulation of metals, US EPA, Washington DC (2004).Google Scholar
  10. 10.
    M. Izquierdo, E. De Miguel, M. F. Ortega and J. Mingot, Chemosphere, 135, 312 (2015).CrossRefGoogle Scholar
  11. 11.
    A. L. Juhasz, J. Weber, E. Smith, R. Naidu, M. Rees, A. Rofe, T. Kuchel and L. Sansom, Environ. Sci. Technol., 43, 9487 (2009).CrossRefGoogle Scholar
  12. 12.
    J. Thoming and W. Calmano, Acta Hydroch. et Hydrob., 26, 338 (1998).CrossRefGoogle Scholar
  13. 13.
    Q. Xia, C. Peng, D. Lamb, M. Mallavarapu, R. Naidu and J. C. Ng, Chemosphere, 147, 444 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Kuppusamy, K. Venkateswarlu, M. Megharaj, S. Mayilswami and Y. B. Lee, Chemosphere, 186, 607 (2017).CrossRefGoogle Scholar
  15. 15.
    S. W. Casteel, R. P. Cowart, C. P. Weis, G. M. Henningsen, E. Hoffman, W. J. Brattin, R. E. Guzman, M. F. Starost, J. T. Payne, S. L. Stockham, S. V. Becker, J. W. Drexler and J. R. Turk, Fundam. Appl. Toxicol., 36, 177 (1997).CrossRefGoogle Scholar
  16. 16.
    M. V. Ruby, R. Schoof, W. Brattin, M. Goldade, G. Post, M. Harnois, D. E. Mosby, S. W. Casteel, W. Berti, M. Carpenter, D. Edwards, D. Cragin and W. Chappell, Environ. Sci. Technol., 33, 3697 (1999).CrossRefGoogle Scholar
  17. 17.
    R. R. Rodriguez and N. T. Basta, Environ. Sci. Technol., 33, 642 (1999).CrossRefGoogle Scholar
  18. 18.
    USEPA, US Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. OLEM 9200.2-164 (2017).Google Scholar
  19. 19.
    K. M. Ellickson, R. J. Meeker, M. A. Gallo, B. T. Buckley and P. J. Lioy, Arch. Environ. Contam. Toxicol., 40, 128 (2001).CrossRefGoogle Scholar
  20. 20.
    J. C. Ng, A. Juhasz, E. Smith and R. Naidu, Environ. Sci. Pollut. Res., 22, 8802 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Denys, J. Caboche, K. Tack, G. Rychen, J. Wragg, M. Cave, C. Jondreville and C. Feidt, Environ. Sci. Technol., 46, 6252 (2012).CrossRefGoogle Scholar
  22. 22.
    P. Sanderson, R. Naidu, N. Bolan, M. Bowman and S. McLure, Sci. Total Environ., 438, 452 (2012).CrossRefGoogle Scholar
  23. 23.
    S. A. Morman, G. S. Plumlee and D. B. Smith, Appl. Geochem., 24, 1454 (2009).CrossRefGoogle Scholar
  24. 24.
    R. M. Molina, L. A. Schaider, T. C. Donaghey, J. P. Shine and J. D. Brain, Environ. Pollut., 182, 217 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Chen and L. Q. Ma, Soil Sci. Soc. Am. J., 65, 491 (2001).CrossRefGoogle Scholar
  26. 26.
    G. S. Yoon, J. C. Yoo, S.-H. Ko, M.-H. Shim, M.-H. Cho and K. Baek, J. Soil Groundwater Environ., 22, 27 (2017).CrossRefGoogle Scholar
  27. 27.
    W. W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi and D. C. Adriano, Anal. Chim. Acta, 436, 309 (2001).CrossRefGoogle Scholar
  28. 28.
    M. E. Lee, E. K. Jeon, D. C. W. Tsang and K. Baek, J. Hazard. Mater., 354, 91 (2018).CrossRefGoogle Scholar
  29. 29.
    K. Kim, S. H. Kim, G. Y. Jeong and R. H. Kim, J. Hazard. Mater., 199, 25 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Dixit and J. G. Hering, Environ. Sci. Technol., 37, 4182 (2003).CrossRefGoogle Scholar
  31. 31.
    C. S. Jeon, S. W. Park, K. Baek, J. S. Yang and J. G. Park, Korean J. Chem. Eng., 29, 1171 (2012).CrossRefGoogle Scholar
  32. 32.
    E. J. Kim, J. C. Yoo and K. Baek, Environ. Pollut., 186, 29 (2014).CrossRefGoogle Scholar
  33. 33.
    N. E. Keon, C. H. Swartz, D. J. Brabander, C. F. Harvey and H. F. Hemond, Environ. Sci. Technol., 35, 2778 (2001).CrossRefGoogle Scholar
  34. 34.
    L. Beesley, E. Moreno-Jimenez, R. Clemente, N. Lepp and N. Dickinson, Environ. Pollut., 158, 155 (2010).CrossRefGoogle Scholar
  35. 35.
    W. Hartley, R. Edwards and N. W. Lepp, Environ. Pollut., 131, 495 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Bagherifam, A. Lakzian, A. Fotovat, R. Khorasani and S. Komarneni, J. Hazard. Mater., 273, 247 (2014).CrossRefGoogle Scholar
  37. 37.
    H. B. Kim, S. H. Kim, E. K. Jeon, D. H. Kim, D. C. W. Tsang, D. S. Alessi, E. E. Kwon and K. Baek, Sci. Total Environ., 636, 1241 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Su-Jin Min
    • 1
  • Hye-Bin Kim
    • 1
  • Seon-Hee Kim
    • 1
  • Kitae Baek
    • 1
    Email author
  1. 1.Department of Environmental Engineering and Soil Environment Research CenterChonbuk National UniversityJeonju, JeollabukdoKorea

Personalised recommendations