Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1922–1931 | Cite as

Measurement and modeling of transport properties of binary liquid mixtures containing oxygenates and n-alkanes

  • Pinki Kashyap
  • Manju RaniEmail author
  • Dinesh Pratap Tiwari
  • So-Jin ParkEmail author
Separation Technology, Thermodynamics
  • 49 Downloads

Abstract

Dynamic viscosities (η) of the binary liquid mixtures of 2-propanol (1)+n-alkanes (C6, C7, C9) (2) at T=288.15 K to 303.15 K and ethanol (1)+n-alkanes (C6, C7, C8) (2) at T=308.15 K to 318.15 K were experimentally measured over the whole composition range. Experimental values of η were used to compute the deviation in dynamic viscosity (Δη) and these Δη values were correlated with the Redlich-Kister equation. The η values of binary mixtures were also calculated using several empirical correlations and mixing rules like Grunberg-Nissan, Tamura-Kurata, Kati-Chaudhari and McLaughlin-Ubbelohde and found that the Grunberg-Nissan correlation gave the best estimation. The Δη values were also predicted by an approach given by Singh et al. [Indian J Chem 29, 263 (1990)].

Keywords

Dynamic Viscosity Deviation in Dynamic Viscosity Ethanol 2-Propanol Alkanes Correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

for the financial support, Pinki Kashyap acknowledges the University Grant Commission, New Delhi (as SRF).

References

  1. 1.
    S. Verma S. Gahlyan, J. Kaur and S. Maken, J. Mol. Liq., 292, 111359 (2019).Google Scholar
  2. 2.
    S. Verma, S. Gahlyan, M. Rani and S. Maken, Korean Chem. Eng. Res., 56, 663 (2018).Google Scholar
  3. 3.
    S. Verma, S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 265, 468 (2018).Google Scholar
  4. 4.
    S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 258, 142 (2018).Google Scholar
  5. 5.
    M. Rani, S. Gahlyan, H. Om, N. Verma and S. Maken, J. Mol. Liq., 194, 100 (2014).Google Scholar
  6. 6.
    S. Gahlyan, S. Verma, M. Rani and S. Maken, Korean J. Chem. Eng., 35, 1167 (2018).Google Scholar
  7. 7.
    K. H. Lee and S. J. Park, Korean J. Chem. Eng., 35, 222 (2018).Google Scholar
  8. 8.
    K. H. Lee, S. J. Park and Y. Y. Choi, Korean J. Chem. Eng., 34, 214 (2017).Google Scholar
  9. 9.
    E. M. Živković, M. L. Kijevčanin, I. R. Radović, S. P. Šerbanović and B. D. Djordjević, Fluid Phase Equilib., 299, 191 (2010).Google Scholar
  10. 10.
    B. González, A. Domínguez, J. Tojo and R. Cores, J. Chem. Eng. Data, 49, 1225 (2004).Google Scholar
  11. 11.
    J. Wang, H. Song, X. Yang, W. Zou, Y. Chen, S. Duan and J. Sun, Korean J. Chem. Eng., 33, 2460 (2016).Google Scholar
  12. 12.
    S. Verma, S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 274, 300 (2019).Google Scholar
  13. 13.
    S. Gahlyan, S. Verma, M. Rani and S. Maken, Korean Chem. Eng. Res., 55, 520 (2017).Google Scholar
  14. 14.
    P. Kashyap, M. Rani, S. Gahlyan, D. P. Tiwari and S. Maken, J. Mol. Liq., 268, 303 (2018).Google Scholar
  15. 15.
    T. M. Aminabhavi and B. Gopalakrishna, J. Chem. Eng. Data, 40, 632 (1995).Google Scholar
  16. 16.
    S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 199, 42 (2014).Google Scholar
  17. 17.
    S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015).Google Scholar
  18. 18.
    G. P. Dubey and M. Sharma, Phys. Chem. Liq., 46, 610 (2008).Google Scholar
  19. 19.
    C. Coquelet, A. Valtz, D. Richon and C. Juan, Fluid Phase Equilib., 259, 33 (2007).Google Scholar
  20. 20.
    A. Pal, H. Kumar, B. Kumar and R. Gaba, J. Mol. Liq., 187, 278 (2013).Google Scholar
  21. 21.
    A. Rodríguez, J. Canosa and J. Tojo, J. Chem. Thermodyn., 32, 999 (2000).Google Scholar
  22. 22.
    G. P. Dubey, S. Rani and P. Kaur, J. Mol. Liq., 234, 335 (2017).Google Scholar
  23. 23.
    T. M. Aminabhavi, M. I. Aralaguppi, S. B. Harogoppad and R. H. Balundgi, J. Chem. Eng. Data, 38, 31 (1993).Google Scholar
  24. 24.
    M. Ramos-Estrada, G. A. Iglesias-Silva and K. R. Hall, J. Chem. Thermodyn., 38, 337 (2006).Google Scholar
  25. 25.
    H. Iloukhani and M. Rezaei-Sameti, J. Mol. Liq., 126, 62 (2006).Google Scholar
  26. 26.
    A. Aucejo, M. C. Burguet, R. Munoz and J. L. Marques, J. Chem. Eng. Data, 40, 141 (1995).Google Scholar
  27. 27.
    G. P. Dubey and M. Sharma, J. Chem. Eng. Data, 52, 449 (2007).Google Scholar
  28. 28.
    J. Canosa, A. Rodríguez and J. Tojo, Fluid Phase Equilib., 156, 57 (1999).Google Scholar
  29. 29.
    G. P. Dubey, M. Sharma and N. Dubey, J. Chem. Thermodyn., 40, 309 (2008).Google Scholar
  30. 30.
    K. V. N. S. Reddy, G. S. Reddy and A. Krishnaiah, Thermochim. Acta, 440, 43 (2006).Google Scholar
  31. 31.
    T. M. Aminabhavi and V. B. Patil, J. Chem. Eng. Data, 42, 641 (1997).Google Scholar
  32. 32.
    B. Orge, M. Iglesias, A. Rodriguez, J. Canosa and J. Tojo, Fluid Phase Equilib., 133, 213 (1997).Google Scholar
  33. 33.
    A. Estrada-Baltazar, G. A. Iglesias-Silva and C. Caballero-Cerón, J. Chem. Eng. Data, 58, 3351 (2013).Google Scholar
  34. 34.
    N. Calvar, E. Gómez, B. González and Á. Domínguez, J. Chem. Thermodyn, 41, 939 (2009).Google Scholar
  35. 35.
    D. C. Landaverde-Cortes, G. A. Iglesias-Silva, M. Ramos-Estrada and K. R. Hall, J. Chem. Eng. Data, 53, 288 (2008).Google Scholar
  36. 36.
    F. X. Feitosa, A. C. R. Caetano, T. B. Cidade and H. B. de Sant’Ana, J. Chem. Eng. Data, 54, 2957 (2009).Google Scholar
  37. 37.
    O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948).Google Scholar
  38. 38.
    P. P. Singh, Ind. J. Chem., 27A, 469 (1988).Google Scholar
  39. 39.
    B. L. Yadav, S. Maken, K. C. Kalra and K. C. Singh, J. Chem. Thermodyn., 25, 1345 (1993).Google Scholar
  40. 40.
    K. C. Singh, K. C. Kalra, S. Maken and B. L. Yadav, J. Chem. Eng. Data, 39, 241 (1994).Google Scholar
  41. 41.
    K. C. Singh, K. C. Kalra, S. Maken and V. Gupta, Fluid Phase Equilib., 123, 271 (1996).Google Scholar
  42. 42.
    S. Verma, S. Gahlyan, M. Rani and S. Maken, Arab. J. Sci. Eng., 43, 6087 (2018).Google Scholar
  43. 43.
    L. Grunberg and A. H. Nissan, Nature, 164, 799 (1949).PubMedGoogle Scholar
  44. 44.
    M. Tamura and M. Kurata, Bull. Chem. Soc. Jpn., 25, 32 (1952).Google Scholar
  45. 45.
    R. K. Hind, E. McLaughlin and A. R. Ubbelohde, Trans. Faraday Soc., 56, 328 (1960).Google Scholar
  46. 46.
    P. K. Katti and M. M. Chaudhri, J. Chem. Eng. Data, 9, 442 (1964).Google Scholar
  47. 47.
    P. K. Katti, M. M. Chaudhri and O. Prakash, J. Chem. Eng. Data, 11, 593 (1966).Google Scholar
  48. 48.
    S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016).Google Scholar
  49. 49.
    P. P. Singh, M. Bhatia and S. Maken, Indian J. Chem., 29, 263 (1990).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia
  2. 2.Department of Chemical Engineering and Applied Chemistry, College of EngineeringChungnam National UniversityDaejeonKorea
  3. 3.Rajiv Gandhi Government Engineering CollegeKangraIndia

Personalised recommendations