Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1839–1853 | Cite as

Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality

  • Pawan KumarEmail author
  • Eric Vejerano
  • Azmatullah Khan
  • Grzegorz Lisak
  • Jeong Hyeon Ahn
  • Ki-Hyun KimEmail author
Invited Review Paper
  • 8 Downloads

Abstract

Coordination polymers (CPs) are a unique class of polymers characterized by a molecular structure consisting of repeating metal centers linked by organic ligands in an infinite array connected through coordination bonding. In the last two decades, research interest in CPs, such as metal organic frameworks (MOFs), has grown rapidly owing to their exclusive advantageous properties (e.g., exceptionally high surface area, chemical and thermal stability, molecular functionality, porosity, electron mobility, thermal conductivity, and mechanical strength). In this study, we started with a basic question: Why and how are coordination polymers special and how do they differ from other classes of polymers? Next, we explored the value of unique and innovative CPs in line with the advent of design and synthesis approaches. We focused on the current trends and challenges of CPs/MOFs for application in the control and management of air quality. The intent of this review is to motivate development of CPs/MOFs that can be ultimately applied towards more efficient and effective technology as remediating and managing of the air quality. Ultimately, this review will help us open a new paradigm to pursue the future progress in polymers and materials science that targets specific applications in environmental engineering.

Keywords

Metal Organic Frameworks Environmental Applications Control and Management Air Quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

PK thanks the Science and Engineering Research Board (SERB), New Delhi, for funding under ‘Empowerment and Equity Opportunities for Excellence in Science’ (Project’s reference no. EEQ/2016/000484). This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995). This research was also supported partially by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE), Republic of Korea.

References

  1. 1.
    J. Lubchenco, Science, 279, 491 (1998).Google Scholar
  2. 2.
    S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. P. Suhh and J. Reedijkij, CrystEngComm., 14, 3001 (2012).Google Scholar
  3. 3.
    F. Perreault, A. F. De Faria and M. Elimelech, Chem. Soc. Rev., 44, 5861 (2015).PubMedGoogle Scholar
  4. 4.
    P. Kumar, A. Deep, K.-H. Kim and R. J. C. Brown, Prog. Polym. Sci., 45, 102 (2015).Google Scholar
  5. 5.
    W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V Desai, J. Li and S. K. Ghosh, Chem. Soc. Rev., 46, 3242 (2017).PubMedGoogle Scholar
  6. 6.
  7. 7.
    Towards A Clean-Air Action Plan, Lessons from Delhi, Centre for Science and Environment, New Delhi (2017).Google Scholar
  8. 8.
  9. 9.
    H. Furukawa, K.E. Cordova M. O’Keeffe and O.M. Yaghi, Science, 341, 1230444 (2013).PubMedPubMedCentralGoogle Scholar
  10. 10.
    R. M. Klein and J. C. Bailar Jr., Inorg. Chem., 2, 1187 (1963).Google Scholar
  11. 11.
    B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 111, 5962 (1989).Google Scholar
  12. 12.
    S. R. Batten, S. M. Neville and D. R. Turner, Coordination polymers: design, analysis and application, Royal Society of Chemistry (2008).Google Scholar
  13. 13.
    S. Kitagawa and M. Kondo, Bull. Chem. Soc. Jpn., 71, 1739 (1998).Google Scholar
  14. 14.
    C. Janiak and J. K. Vieth, New J. Chem., 34, 2366 (2010).Google Scholar
  15. 15.
    J.-P. Zhang, Y.-B. Zhang, J.-B. Lin and X.-M. Chen, Chem. Rev., 112, 1001 (2011).PubMedGoogle Scholar
  16. 16.
    H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature, 402, 276 (1999).Google Scholar
  17. 17.
    D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. O’Keeffe and O. M. Yaghi, Chem. Soc. Rev., 38, 1257 (2009).PubMedGoogle Scholar
  18. 18.
    C. Janiak, Dalton Transactions, 2781-804 (2003).Google Scholar
  19. 19.
    K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 112, 724 (2011).PubMedGoogle Scholar
  20. 20.
    K. A. Cychoszand A. J. Matzger, Langmuir, 26, 17198 (2010).Google Scholar
  21. 21.
    T. Uemura, N. Yanai and S. Kitagawa, Chem. Soc. Rev., 38, 1228 (2009).PubMedGoogle Scholar
  22. 22.
    R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang and H.-C. Zhou, Coord. Chem. Rev., 253, 3042 (2009).Google Scholar
  23. 23.
    N. A. Khan, Z. Hasan and S. H. Jhung, J. Hazard. Mater., 244, 444 (2013).PubMedGoogle Scholar
  24. 24.
    C. Dey, T. Kundu, B. P. Biswal, A. Mallick and R. Banerjee, Cryst. Eng. Mater., 70, 3 (2014).Google Scholar
  25. 25.
    J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009).PubMedGoogle Scholar
  26. 26.
    O. M. Yaghi, M. O’keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705 (2003).PubMedGoogle Scholar
  27. 27.
    N. Stock and S. Biswas, Chem. Rev., 112, 933 (2011).PubMedGoogle Scholar
  28. 28.
    J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 43, 6011 (2014).PubMedPubMedCentralGoogle Scholar
  29. 29.
    S. M. Cohen, Chem. Rev., 112, 970 (2011).PubMedGoogle Scholar
  30. 30.
    B. Li, H.-M. Wen, W. Zhou and B. Chen, J. Phys. Chem. Lett., 5, 3468 (2014).PubMedGoogle Scholar
  31. 31.
    I. Imaz, J. Hernando, D. Ruiz-Molina and D. Maspoch, Angew. Chem. Int. Ed., 48, 2325 (2009).Google Scholar
  32. 32.
    M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 116(3), 1151 (1994).Google Scholar
  33. 33.
    O. M. Yaghi, G. Li and H. Li, Nature, 378(6558), 703 (1995).Google Scholar
  34. 34.
    A. P. Cote, A. I. Benin, N. W Ockwig, M. O’keeffe, A. J. Matzger and O. M. Yaghi, Science, 310, 1166 (2005).PubMedGoogle Scholar
  35. 35.
    J. L. Rowsell and O. M. Yaghi, Micropor. Mesopor. Mater., 73(1–2), 3 (2004).Google Scholar
  36. 36.
    J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 128, 1304 (2006).PubMedGoogle Scholar
  37. 37.
    G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray and J. D. Cashion, Science, 298, 1762 (2002).PubMedGoogle Scholar
  38. 38.
    K. S. Minand M. P. Suh, Chem. Eur. J., 7, 303 (2001).Google Scholar
  39. 39.
    J. Cai, J.-S. Zhou and M.-L. Lin, J. Mater. Chem., 13, 1806 (2003).Google Scholar
  40. 40.
    D. Maspoch, D. Ruiz-Molina, K. Wurst, N. Domingo, M. Cavallini, F. Biscarini, J. Tejada, C. Rovira and J. Veciana, Nature Mater., 2, 190 (2003).Google Scholar
  41. 41.
    C. Yifa, Z. Shenghan, C. Sijia, L. Siqing, C. Fan, Y Shuai, X. Cheng, Z. Junwen, F. Xiao, M. Xiaojie and W. Bo, Adv. Mater., 29, 1606221 (2017).Google Scholar
  42. 42.
    P. Kumar, K.-H. Kim, E. E. Kwon and J. E. Szulejko, J. Mater. Chem. A, 4, 345 (2016).Google Scholar
  43. 43.
    J. F. Van Humbeck, T. M. McDonald, X. Jing, B. M. Wiers, G. Zhu and J. R. Long, J. Am. Chem. Soc., 136, 2432 (2014).PubMedGoogle Scholar
  44. 44.
    A. J. Rieth, Y. Tulchinsky and M. Dincă, J. Am. Chem. Soc., 138, 9401 (2016).PubMedGoogle Scholar
  45. 45.
    S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 130, 10870 (2008).PubMedGoogle Scholar
  46. 46.
    J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long, Energy Environ. Sci., 4(8), 3030 (2011).Google Scholar
  47. 47.
    T. M. McDonald, D. M. D’Alessandro, R. Krishna and J. R. Long, Chem. Sci., 2, 2022 (2011).Google Scholar
  48. 48.
    D.-X. Xue, A. J. Cairns, Y. Belmabkhout, L. Wojtas, Y. Liu and M. H. Alkordi, J. Am. Chem. Soc., 135, 7660 (2013).PubMedGoogle Scholar
  49. 49.
    D.-X. Xue, A. J. Cairns, Y. Belmabkhout, L. Wojtas, Y. Liu, M. H. Alkordi and M. Eddaoudi, Chem. Sci., 7, 6528 (2016).Google Scholar
  50. 50.
    X.-L. Wang, H.-L. Fan, Z. Tian, E.-Y. He, Y. Li and J. Shangguan, Appl. Surf. Sci., 289, 107 (2014).Google Scholar
  51. 51.
    X.-L. Wang, H.-L. Fan, Z. Tian, E.-Y. He, Y. Li and J. Shangguan, Chem., 3, 822 (2017).Google Scholar
  52. 52.
    S. M. T. Abtab, D. Alezi, P. M. Bhatt, A. Shkurenko, Y. Belmabkhout, H. Aggarwal, Ł. J. Weseliński, N. Alsadun, U. Samin, M. N. Hedhili and M. Eddaoudi, Chem., 4, 94 (2018).Google Scholar
  53. 53.
    T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocellà, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer and J. R. Long, Nature, 519, 303 (2015).PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ö. Karahan, E. Biçer, A. Taşdemir, A. Yürüm and A. Gürsel Selmiye, Eur. J. Inorg. Chem., 2018, 1073 (2018).Google Scholar
  55. 55.
    X. Han, H. G. W. Godfrey, L. Briggs, A. J. Davies, Y. Cheng, L. L. Daemen, A. M. Sheveleva, F. Tuna, E. J. L. McInnes, J. Sun, C. Drathen, M. W. George, A. J. Ramirez-Cuesta, K. M. Thomas, S. Yang and M. Schröder, Nature Materials, 17, 691 (2018).PubMedGoogle Scholar
  56. 56.
    O. Karahan, E. Biçer, A. Taşdemir, A. Yürüm and S. A. Gürsel, Eur. J. Inorg. Chem., 2018(9), 1073 (2018).Google Scholar
  57. 57.
    J.-M. Gu, W.-S. Kim and S. Huh, Dalton Transactions, 40, 10826 (2011).PubMedGoogle Scholar
  58. 58.
    X. Ma, Y.-X. Zhou, H. Liu, Y. Li and H.-L. Jiang, Chem. Commun., 52, 7719 (2016).Google Scholar
  59. 59.
    Z. Liu, W. Dong, S. Cheng, S. Guo, N. Shang, S. Gao, C. Feng, C. Wang and Z. Wang, Catal. Commun., 95, 50 (2017).Google Scholar
  60. 60.
    B. Tang, W. C. Song, E. C. Yang and X. J. Zhao, RSC Adv., 7(3), 1531 (2017).Google Scholar
  61. 61.
    Noll, Kenneth E., Adsorption technology for air and water pollution control, CRC Press (1991).Google Scholar
  62. 62.
    J. Kammerer, R. Carle and D. R. Kammerer, J. Agric. Food Chem., 59, 22 (2011).PubMedGoogle Scholar
  63. 63.
    O. Leenaerts, B. Partoens and F. M. Peeters, Appl. Phys. Lett., 93, 193107 (2008).Google Scholar
  64. 64.
    C. Petit and T. J. Bandosz, Adv. Funct. Mater., 21(11), 2108 (2011).Google Scholar
  65. 65.
    S. Schumacher, T. O. Wehling, P. Lazić, S. Runte, D. F. Förster, C. Busse, M. Petrović, M. Kralj, S. Blügel, N. Atodiresei, V. Caciuc and T. Michely, Nano Lett., 13, 5013 (2013).PubMedGoogle Scholar
  66. 66.
    N. C. Burtch, H. Jasuja and K. S. Walton, Chem. Rev., 114, 10575 (2014).Google Scholar
  67. 67.
    J. E. Szulejko, K.-H. Kim and J. Parise, Seeking the most powerful and practical sorbents for real-world applications based on performance metrics, Submitted (2018).Google Scholar
  68. 68.
    A. Khan, J. E. Szulejko, K. J. Kim and R. J. Brown, J. Environ. Manage., 209, 525 (2018).PubMedGoogle Scholar
  69. 69.
    Y. H. Kim and K. H. Kim, Anal. Chem., 85, 5087 (2013).PubMedGoogle Scholar
  70. 70.
    J. Pawliszyn, Sampling and sample preparation for field and laboratory: fundamentals and new directions in sample preparation, Elsevier (2002).Google Scholar
  71. 71.
    S. J. Gregg, K.S.W. Sing and H. W. Salzberg, J. Electrochem. Soc., 114(11), 279C (1967).Google Scholar
  72. 72.
    S. Brunauer and L. Copeland, Physical adsorption of gases and vapors on solids, In Symposium on Properties of Surfaces, ASTM International (1963).Google Scholar
  73. 73.
    R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, Nature, 436, 238 (2005).PubMedGoogle Scholar
  74. 74.
    B. Panella, M. Hirscher, H. Pütter and U. Müller, Adv. Funct. Mater., 16(4), 520 (2006).Google Scholar
  75. 75.
    J. L. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 128(4), 1304 (2006).PubMedGoogle Scholar
  76. 76.
    M. T. Luebbers, T. Wu, L. Shen and R. I. Masel, Langmuir, 26, 11319 (2010).PubMedGoogle Scholar
  77. 77.
    C.-Y. Huang, M. Song, Z.-Y. Gu, H.-F. Wang and X.-P. Yan, Environ. Sci. Technol., 45, 4490 (2011).PubMedGoogle Scholar
  78. 78.
    Y.-H. Kim, P. Kumar, E. E. Kwon and K.-H. Kim, Microchem. J., 132, 219 (2017).Google Scholar
  79. 79.
    R. P. H. Gasser and G. Ehrlich, Phys. Today, 40, 128 (1987).Google Scholar
  80. 80.
    W. G. Jin, W. Chen, P. H. Xu, X. W. Lin, X. C. Huang, G. H. Chen, F. Lu and X.-M. Chen, Chem.-A Eur. J., 23, 13058 (2017).Google Scholar
  81. 81.
    C. Chen, L.-X. Cai, B. Tan, Y.-J. Zhang, X.-D. Yang, S. Lin and J. Zhang, Cryst. Growth Des., 17, 1843 (2017).Google Scholar
  82. 82.
    W. MacKenzie and D. Sherrington, Polymer, 21, 791 (1980).Google Scholar
  83. 83.
    J. H. Jung, J. H. Lee, J. R. Silverman and G. John, Chem. Soc. Rev., 42, 924 (2013).PubMedGoogle Scholar
  84. 84.
    S. T. Meek, J. A. Greathouse and M. D. Allendorf, Adv. Mater., 23, 249 (2011).PubMedGoogle Scholar
  85. 85.
    M. Sabo, A. Henschel, H. Fröde, E. Klemm and S. Kaskel, J. Mater. Chem., 17, 3827 (2007).Google Scholar
  86. 86.
    I. Luz, F. X. Llabrés I Xamena and A. Corma, J. Catal., 276, 134 (2010).Google Scholar
  87. 87.
    D. T. Genna, A. G. Wong-Foy, A. J. Matzger and M. S. Sanford, J. Am. Chem. Soc., 135, 10586 (2013).PubMedGoogle Scholar
  88. 88.
    X. Zhang, F. X. Llabrés I Xamena and A. Corma, J. Catal., 265, 155 (2009).Google Scholar
  89. 89.
    I. Luz, F. X. Llabrés I Xamena and A. Corma, J. Catal., 285, 285 (2012).Google Scholar
  90. 90.
    J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 38, 1450 (2009).PubMedGoogle Scholar
  91. 91.
    Y. Du, H. Yang, S. Wan, Y. Jin and W. Zhang, J. Mater. Chem. A, 5, 9163 (2017).Google Scholar
  92. 92.
    M. Gupta, D. De, S. Pal, T. K. Pal and K. Tomar, Dalton Transactions, 46, 7619 (2017).PubMedGoogle Scholar
  93. 93.
    B. Chen, S. Xiang and G. Qian, Acc. Chem. Res., 43, 1115 (2010).PubMedGoogle Scholar
  94. 94.
    L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem. Rev., 112, 1105 (2011).PubMedGoogle Scholar
  95. 95.
    P. Kumar, A. Deep and K.-H. Kim, TrAC Trends Anal. Chem., 73, 39 (2015).Google Scholar
  96. 96.
    P. Kumar, A. Pournara, K.-H. Kim, V. Bansal, S. Rapti and M. J. Manos, Prog. Mater. Sci., 86, 25 (2017).Google Scholar
  97. 97.
    K. Vikrant, D. C. Tsang, N. Raza, B. S. Giri, D. Kukkar and K.-H. Kim, ACS Appl. Mater. Interfaces, 10, 8797 (2018).PubMedGoogle Scholar
  98. 98.
    P. I. Gouma, Nanomaterials for chemical sensors and biotechnology, Pan Stanford (2009).Google Scholar
  99. 99.
    M. L. Aulsebrook, S. Biswas, F. M. Leaver, M. R. Grace, B. Graham, A. M. Barrios and K. L. Tuck, Chem. Commun., 53, 4911 (2017).Google Scholar
  100. 100.
    Y. Zhao, X. Xu, L. Qiu, X. Kang, L. Wen and B. Zhang, ACS Appl. Mater. Interfaces, 9, 15164 (2017).PubMedGoogle Scholar
  101. 101.
    A. Deep, S. K. Bhardwaj, A. Paul, K.-H. Kim and P. Kumar, Biosens. Bioelectron., 65, 226 (2015).PubMedGoogle Scholar
  102. 102.
    J. Troyano, O. Castillo, J. I. Martínez, V Fernández-Moreira, Y. Ballesteros, D. Maspoch, F. Zamora and S. Delgado, Adv. Funct. Mater., 28, 1704040 (2018).Google Scholar
  103. 103.
    P. A. Julien, C. Mottillo and T. Friščić, Green Chem., 19, 2729 (2017).Google Scholar
  104. 104.
    A. Wang, R. Fan, X. Zhou, S. Hao, X. Zheng and Y Yang, ACS Appl. Mater. Interfaces, 10, 9744 (2018).PubMedGoogle Scholar
  105. 105.
    F. Gholami, S. Zinadini, A. Zinatizadeh and A. Abbasi, Sep. Purif. Technol., 194, 272 (2018).Google Scholar
  106. 106.
    J. B. DeCoste and G. W. Peterson, Chem. Rev., 114(11), 5695 (2014).PubMedGoogle Scholar
  107. 107.
    J. Canivet, A. Fateeva, Y. Guo, B. Coasne and D. Farrusseng, Chem. Soc. Rev., 43(16), 5594 (2014).PubMedGoogle Scholar
  108. 108.
    L. Zhu, X. Q. Liu, H. L. Jiang and B. Sun, Chem. Rev., 117(12), 8129 (2017).PubMedGoogle Scholar
  109. 109.
    T. Smoke and I. Smoking, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, 1–1452 (2004).Google Scholar
  110. 110.
    C. A. Machado, N. Robbins, M. T. P. Gilbert and E. A. Herre, Proc. Natl. Acad. Sci., 102, 6558 (2005).PubMedGoogle Scholar
  111. 111.
    A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl and A. Amann, Int. J. Mass Spectrom., 265, 49 (2007).Google Scholar
  112. 112.
    C. Hakim, Research Design: Succesful Designs for Social Economics Research, Routledge (2012).Google Scholar
  113. 113.
    A. T. Güntner, S. Abegg and K. Wegner, Sens. Actuators, B: Chem., 257, 916 (2018).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Materials Application Research Laboratory, Department of Nano Sciences & MaterialsCentral University of JammuJammuIndia
  2. 2.Department of Civil & Environmental EngineeringHanyang UniversitySeoulKorea
  3. 3.Center for Environmental Nanoscience and Risk, Department of Environmental Health SciencesUniversity of South CarolinaColumbiaUSA
  4. 4.Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore
  5. 5.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations