Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1799–1805 | Cite as

Free chlorine and phytic acid synergistically inactivated conidia of Aspergillus spp.

  • Young-seok Seo
  • Nuri Choi
  • Kangmin Kim
  • Min ChoEmail author
Rapid Communication


Chlorination has been widely used to disinfect various microbials in the environment, but its fungicidal activity is known to be limited. Here, we demonstrate that a combinatorial treatment with free chlorine and phytic acid exerted high fungicidal activities against selected species of Aspergillus. Treatment with either chlorine (7 mg/l) or phytic acid (∼400 mg/l) without pH adjustment caused marginal inactivation of Aspergillus niger conidia within 5 min. However, the combinatorial treatment with free chlorine and phytic acid inactivated 98% of A. niger conidia within 5min (\(\overline {\rm{C}} {\rm{T}} = 25.7\;{\rm{mg/}}l \cdot \min \)). Overall fungicidal efficiency of combinatorial application was higher (∼256%) than the sum of inactivation levels by individual treatment, suggesting a synergistic effect between free chlorine and phytic acid. Transmission electron microscopy observation showed that free chlorine primarily disrupted nucleo-cytosolic organs, whereas phytic acid preferentially disintegrated the cell wall and plasma membrane. The combination of both agents demolished the conidial structure of A. niger. The effects of these chemicals on the cell membrane were verified with propidium iodide staining, lipid peroxidation, and extracellular ATP secretion. Fungicidal activities of chlorine and phytic acid were further confirmed against A. parasiticus and A. flavus. Our data suggest that the mixture of free chlorine and phytic acid without any additional preparation may efficiently disinfect Aspergillus spp. through the synergistic activities of individual components.


Free Chlorine Phytic Acid Combinatorial Treatment Aspergillus spp. Inactivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Korea Environment Industry and Technology Institute (KEITI) through Public Technology Program based on Environmental Policy, funded by Korea Ministry of Environment (MOE) (2018000200001) and by the Korean National Research Foundation (2016M3A7B4909370 and 2018R1 A6A3A01010578).

Supplementary material

11814_2019_366_MOESM1_ESM.pdf (72 kb)
Free chlorine and phytic acid synergistically inactivated conidia of Aspergillus spp.


  1. 1.
    J. Guinea, T. Pelaez, L. Alcala and E. Bouza, Med. Mycol., 44, 349 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    B. Mousavi, M. T. Hedayati, N. Hedayati, M. Ilkit and S. Syedmousavi, Curr. Med. Mycol., 2, 36 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    H. Brahm and M. D. Segal, N. Engl. J. Med., 360, 1870 (2009).CrossRefGoogle Scholar
  4. 4.
    P. Kumar, D. K. Mahato, M. Kamle, T. K. Mohanta and S. G. Kang, Front. Microbiol., 7, 2170 (2016).PubMedPubMedCentralGoogle Scholar
  5. 5.
    L. Zhu, B. Zhang, Y. Dai, H. Li and W. Xu, Toxins (Basel), 9, 113 (2017).CrossRefGoogle Scholar
  6. 6.
    X. Ma and K. Bibby, Water Res., 120, 265 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    H. Nourmoradi, M. Nikaeen, C. R. Stensvold and H. Mirhendi, Water Res., 46, 5935 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    M. Sokmen, I. Tatlidil, C. Breen, F. Clegg, C. K. Buruk, T. Sivlim and S. Akkan, J. Hazard. Mater., 187, 199 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    K. C. Piacentini, G. D. Savi and V. M. Scussel, Qual. Assur. Saf. Crop., 9, 383 (2017).CrossRefGoogle Scholar
  10. 10.
    R. Hassan, S. El-Kadi and M. Sand, J. Adv. Biol., 2, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Fukuzaki, Biocontrol. Sci., 11, 147 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    V. J. Pereira, R. Marques, M. Marques, M. J. Benoliel and M. T. Barreto Crespo, Water Res., 47, 517 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    G. Wen, X. Xu, T. Huang, H. Zhu and J. Ma, Water Res., 125, 132 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    M. Sisti, G. Brandi, M. De Santi, L. Rinaldi and G. F. Schiavano, J. Water Health, 10, 11 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    D. Kanzler, W. Buzina, A. Paulitsch, D. Haas, S. Platzer, E. Marth and F. Mascher, Mycoses, 51, 165 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    H. M. Al-Gabr, T. Zheng and X. Yu, Sci. Total. Environ., 463–464, 525 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    M. N. Groot, T. Abee and H. van Bokhorst-van de Veen, Food Microbiol., 81, 108 (2019).CrossRefGoogle Scholar
  18. 18.
    J. S. Piotrowski, H. Okada, F. Lu, S. C. Li, L. Hinchman, A. Ranjan, D. L. Smith, A. J. Higbee, A. Ulbrich, J. J. Coon, R. Deshpande, Y. V. Bukhman, S. McIlwain, I. M. Ong, C. L. Myers, C. Boone, R. Landick, J. Ralph, M. Kabbage and Y. Ohya, Proc. Natl. Acad. Sci. USA, 112, E1490 (2015).PubMedPubMedCentralGoogle Scholar
  19. 19.
    C. H. Pohl, J. L. F. Kock and V. S. Thibane, Antifungal free fatty acids: A review, Formatex, Badajoz (2011).Google Scholar
  20. 20.
    J. Yun and D. G. Lee, FEMS Yeast Res., 16, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Petrovic, D. Bonvin, H. Hofmann and M. Mionic Ebersold, Int. J. Mol. Sci., 19, 1 (2018).CrossRefGoogle Scholar
  22. 22.
    X. C. Li, M. R. Jacob, S. I. Khan, M. K. Ashfaq, K. S. Babu, A. K. Agarwal, H. N. Elsohly, S. P. Manly and A. M. Clark, Antimicrob. Agents. Chemother., 52, 2442 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    M. Sakko, C. Moore, L. Novak-Frazer, V. Rautemaa, T. Sorsa, P. Hietala, A. Jarvinen, P. Bowyer, L. Tjaderhane and R. Rautemaa, Mycoses, 57, 214 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    S. Puvvada, P. Latha, K. B. Jayalakshmi and S. K. Arul, Int. J. Appl. Dent. Sci., 3, 19 (2017).Google Scholar
  25. 25.
    R. Nassar and M. Nassar, Int. Arab. J. Antimicrob. Agents, 6, 1 (2016).Google Scholar
  26. 26.
    A. K. Yadav, P. Sirohi, S. Saraswat, M. Rani, M. P. Singh, S. Srivastava and N. K. Singh, Curr. Microbiol., 75, 849 (2018).PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    J. J. Hue, L. Li, Y. E. Lee, K. N. Lee, S. Y. Nam, Y. W. Yun, J. H. Jeong, S. H. Lee, H. S. Yoo and B. J. Lee, J. Food Hyg. Saf., 22, 37 (2007).Google Scholar
  28. 28.
    N. H. Kim and M. S. Rhee, Appl. Environ. Microbiol., 82, 1040 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    M. Cho, H. Chung and J. Yoon, Environ. Sci. Technol., 37, 2134 (2003).PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    M. Cho, H. Kim, S. H. Cho and J. Yoon, Ozone Sci. Eng., 25, 251 (2003).CrossRefGoogle Scholar
  31. 31.
    M. Cho, J. H. Kim and J. Yoon, Water Res., 40, 2911 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    M. J. Karnovsky, J. Cell Biol., 27, A137 (1965).Google Scholar
  33. 33.
    L. K. Dhandole, Y. S. Seo, S. G. Kim, A. Kim, M. Cho and J. S. Jang, Photochem. Photobiol. Sci., 18, 1092 (2019).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    M. D. Sobsey, T. Fuji and P. A. Shields, Water Sci. Technol., 20, 385 (1988).CrossRefGoogle Scholar
  35. 35.
    A. M. Driedger, J. L. Rennecker and B. J. Mariñas, Water Res., 34, 3591 (2000).CrossRefGoogle Scholar
  36. 36.
    M. Cho, V. Gandhi, T. M. Hwang, S. Lee and J. H. Kim, Water Res., 45, 1063 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    C. L. Hawkins, D. I. Pattison and M. J. Davies, Amino Acids, 25, 259 (2003).PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    P. Breeuwer and T. Abee, Int. J. Food Microbiol., 55, 193 (2000).PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    M. Berney, H. U. Weilenmann and T. Egli, Microbiology, 152, 1719 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Q. Zhou, Y. Zhao, H. Dang, Y. Tang and B. Zhang, J. Food Prot., 82, 826 (2019).PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    L. Leive, Biochem. Biophys. Res. Commun., 21, 290 (1965).PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    M. Vaara, Microbiol. Rev., 56, 395 (1992).PubMedPubMedCentralGoogle Scholar
  43. 43.
    I. M. Helander and T. Mattila-Sandholm, J. Appl. Microbiol., 88, 213 (2000).PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Young-seok Seo
    • 1
  • Nuri Choi
    • 1
  • Kangmin Kim
    • 1
  • Min Cho
    • 1
    Email author
  1. 1.SELS Center, Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource SciencesChonbuk National UniversityIksanKorea

Personalised recommendations