Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1854–1858 | Cite as

Enhancing membrane wetting resistance through superhydrophobic modification by polydimethylsilane-grafted-SiO2 nanoparticles

  • Moau Jian Toh
  • Pei Ching OhEmail author
  • Abdul Latif Ahmad
  • Julien Caille
Rapid Communication
  • 74 Downloads

Abstract

Membrane gas-liquid separation technology has been widely employed in membrane filtration, distillation, and gas absorption, attributed to its high mass transfer efficiency However, hydrophobic membranes may suffer from pore wetting at low operational pressure difference, leading to the deterioration of removal flux. Hence, anti-wetting strategy via membrane surface modification to improve its intrinsic hydrophobicity needs to be investigated. In this work, modified superhydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) membrane was synthesized via non-solvent induced phase separation. Polydimethylsilane-grafted-silica (PGS) nanoparticles with non-polar Si-O-Si bonds were used as surface modifier in coagulation bath to enhance membrane surface hydrophobicity. Results demonstrated that the addition of nanoparticles improved the surface roughness via formation of hierarchical structure. Additionally, the deposition of nanoparticles on polymer spherulites significantly reduced the surface free energy. As a result, modified membranes achieved superhydrophobicity with water contact angle exceeding 150°. The stability tests also showed that the deposition layer of modified membrane was mechanically and thermally robust. This super-hydrophobic modification by PGS nanoparticles is an advanced and facile approach to alleviate membrane wetting.

Keywords

Superhydrophobic Surface Wetting Resistance Hierarchical Morphology Grafted-silica Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research work was supported by Universiti Teknologi PETRONAS under YUTP-FRG grant no. 0153AA-E08 and FRGS grant no 015MA0-003.

References

  1. 1.
    S. Mosadegh-Sedghi, D. Rodrigue, J. Brisson and M. C. Iliuta, J. Membr. Sci., 452, 332 (2014).CrossRefGoogle Scholar
  2. 2.
    J. K. J. Yong, The Development of Thin Films for Efficient Carbon Capture and Storage, M.S. thesis, University of Melbourne Victoria (2016).Google Scholar
  3. 3.
    H. Nurul Faiqotul and I. G. Wenten, J. Phys: Conf. Ser., 877, 10 (2017).Google Scholar
  4. 4.
    M. H. Ibrahim, M. H. El-Naas, Z. Zhang and B. Van der Bruggen, Energy Fuels, 32, 963 (2018).CrossRefGoogle Scholar
  5. 5.
    J. Jeevahan, M. Chandrasekaran, G. B. Joseph, R. Durairaj and G. Mageshwaran, J. Coat. Technol. Res., 15, 231 (2018).CrossRefGoogle Scholar
  6. 6.
    X. Wu, B. Zhao, L. Wang Z. Zhang, J. Li and X. He, Sep. Purif. Technol., 190, 108 (2018).CrossRefGoogle Scholar
  7. 7.
    A. Ghaee, A. Ghadimi, B. Sadatnia, A. F. Ismail, Z. Mansourpour and M. Khosravi, Chem. Eng. Res. Des., 120, 47 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Y. E. Tan, P. C. Oh, K. K. Lau and S. C. Low, Chin. J. Polym. Sci., 37, 654 (2019).CrossRefGoogle Scholar
  9. 9.
    V. Fernández and M. Khayet, Frontiers in Plant Sci., 6, 510 (2015).CrossRefGoogle Scholar
  10. 10.
    I. Malavasi, I. Bernagozzi, C. Antonini and M. Marengo, Surf. Innovations, 3, 49 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Liu, T. Xiao, C. Bao, Y Fu and X. Yang, J. Membr. Sci., 563, 298 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Munirasu, F. Banat, A. A. Durrani and M. A. Haija, Desalination, 417, 77 (2017).CrossRefGoogle Scholar
  13. 13.
    B. Dong, L. Yang, Q. Yuan, Y. Liu, J. Zhang and G. Fang, Construction and Building. Mater., 110, 163 (2016).CrossRefGoogle Scholar
  14. 14.
    C. Boo, J. Lee and M. Elimelech, Environ. Sci. Technol., 50, 8112 (2016).CrossRefGoogle Scholar
  15. 15.
    G. B. Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar and A. Kaboli, Arabian. J. Chem. (2018), doi: https://doi.org/10.1016/j.arabjc.2018.01.013.
  16. 16.
    K. Y Eum, I. Phiri, J. W. Kim, W. San Choi, J. M. Ko and H. Jung, Korean J. Chem. Eng., 36, 1313 (2019).CrossRefGoogle Scholar
  17. 17.
    H. Zhou, R. Shi and W. Jin, Sep. Purif. Technol., 127, 61 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Moau Jian Toh
    • 1
  • Pei Ching Oh
    • 1
    Email author
  • Abdul Latif Ahmad
    • 2
  • Julien Caille
    • 3
  1. 1.CO2 Research Centre, Institute of Contaminant Management, Chemical Engineering DepartmentUniversiti Teknologi PETRONASSeri IskandarMalaysia
  2. 2.School of Chemical Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  3. 3.National Superior Engineering School of Industrial TechnologiesPauFrance

Personalised recommendations