Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1785–1790 | Cite as

Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization

  • Taewan Kim
  • Hyung-Eun Kim
  • Jiyoon Cho
  • Hak-Hyeon Kim
  • Jiwon Seo
  • Junghun Lee
  • Joon-Young Choi
  • Changha LeeEmail author
Rapid Communication


The inactivation kinetics of E. coli and MS2 coliphage by singlet oxygen (1O2) were investigated in a homogeneous photosensitization system using Rose Bengal (RB) and visible light illumination (the Vis/RB system). The inactivation of E. coli and MS2 in the Vis/RB system was monitored over time with variations of several parameters such as pH, light intensity, concentration of RB, and the presence of dissolved oxygen. In addition, the concentration of 1O2 generated by the Vis/RB system was quantified using furfuryl alcohol under each microbial inactivation conditions. Based on the obtained results, the degree of microbial inactivation was quantitatively correlated with 1O2 exposure using the (delayed) Chick-Watson model. The Ct (concentration-time product) values of 1O2 required for 2 log microbial inactivation were found to be 1.3×10−4 mg·min/L for E. coli and 1.9×10−5 mg·min/L for MS2, respectively. The inactivation of E. coli exhibited an initial lag phase until 0.5×10−4 mg·min/L of Ct.


E. coli MS2 Coliphage Singlet Oxygen Disinfection Inactivation Kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Korea Ministry of Environment as an “Advanced Industrial Technology Development Project” (2017000140005) and as “Industrial Facilities & Infrastructure Research Program” (88107), and by NRF-2017-Global Ph.D. Fellowship Program.


  1. 1.
    T. Kohn and K. L. Nelson, Environ. Sci. Technol., 41, 192 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Cho, H. Chung, W. Choi and J. Yoon, Water Res., 38, 1069 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. Horie, D. A. David, M. Taya and S. Tone, Ind. Eng. Chem. Res., 35, 3920 (1996).CrossRefGoogle Scholar
  4. 4.
    M. Cho, J. Lee, Y. Mackeyev, L. J. Wilson, P. J. J. Alvarez, J. B. Hughes and J.-H. Kim, Environ. Sci. Technol., 44, 6685 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Mamane, H. Shemer and K. G. Linden, J. Hazard. Mater., 146, 479 (2007).CrossRefGoogle Scholar
  6. 6.
    C. Liu, D. Kong, P. -C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm and Y. Cui, Nat. Nanotechnol., 11, 1098 (2016).CrossRefGoogle Scholar
  7. 7.
    T. A. Dahl, W. R. Midden and P. E. Hartman, Photochem. Photobiol., 48, 345 (1987).CrossRefGoogle Scholar
  8. 8.
    T. A. Dahl, W. R. Midden and P. E. Hartman, Photochem. Photobiol., 48, 605 (1989).Google Scholar
  9. 9.
    T. A. Dahl, W. R. Midden and D. C. Necker, J. Bacteriol., 171, 2188 (1988).CrossRefGoogle Scholar
  10. 10.
    S. A. Bezman, P. A. Burtis, T. P. J. Izod and M. A. Thayer, Photochem. Photobiol., 28, 325 (1978).CrossRefGoogle Scholar
  11. 11.
    E. M. Hotze, A. R. Badireddy, S. Chellam and M. R. Weisner, Environ. Sci. Technol., 43, 6639 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Müller-Breitkreutz, H. Mohr, K. Brivida and H. Seis, J. Photoch. Photobio. B-Biol., 30, 63 (1995).CrossRefGoogle Scholar
  13. 13.
    M. Schäfer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K.-H. Funken and J. Ortner, Photochem. Photobiol., 71, 514 (2000).CrossRefGoogle Scholar
  14. 14.
    A. I. Silverman, B. M. Peterson, A. B. Boehm, K. McNeill and K. L. Nelson, Environ. Sci. Technol., 47, 1870 (2013).CrossRefGoogle Scholar
  15. 15.
    E. Ryberg, C. Chu and J.-H. Kim, Environ. Sci. Technol., 52, 13361 (2018).CrossRefGoogle Scholar
  16. 16.
    M. Cho, H. Chung, W. Choi and J. Yoon, Appl. Environ. Microbiol., 71, 270 (2005).CrossRefGoogle Scholar
  17. 17.
    H. A. Foster, I. B. Ditta, S. Varghese and A. Steele, Appl. Microbiol. Biotechnol., 90, 1847 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Castro-Alférez, M. I. Polo-López and P. Fernández-Ibáñez, Sci. Rep., 6, 38145 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Amrullah, N. Paksung and Y. Matsumura, Korean J. Chem. Eng., 36, 433 (2019).CrossRefGoogle Scholar
  20. 20.
    J. Brame, M. Long, Q. Li and P. Alvarez, Water Res., 60, 259 (2014).CrossRefGoogle Scholar
  21. 21.
    C. S. Foote, Science, 162, 963 (1968).CrossRefGoogle Scholar
  22. 22.
    C. S. Foote, Acc. Chem. Res., 1, 104 (1968).CrossRefGoogle Scholar
  23. 23.
    M. E. Jiménez-Hernández, F. Manjón, D. García-Fresnadillo and G. Orellana, Sol. Energy, 80, 1382 (2006).CrossRefGoogle Scholar
  24. 24.
    J. D. Buck and R. C. Cleverdon, Limnol. Oceanogr., 5, 78 (1960).CrossRefGoogle Scholar
  25. 25.
    S. Y. Park and C. G. Kim, Environ. Eng. Res., 23, 282 (2018).CrossRefGoogle Scholar
  26. 26.
    B. B. Wentworth and L. French, Exp. Biol. Med., 135, 253 (1970).CrossRefGoogle Scholar
  27. 27.
    F. E. Scully, Jr. and J. Hoigné, Chemosphere, 16, 681 (1987).CrossRefGoogle Scholar
  28. 28.
    Y. Kouame and C. N. Haas, Water Res., 25, 1027 (1991).CrossRefGoogle Scholar
  29. 29.
    N. K. Hunt and B. J. Mariñas, Water Res., 31, 1355 (1997).CrossRefGoogle Scholar
  30. 30.
    J. L. Rennecker, B. J. Mariñas, J. H. Owens and E. W. Rice, Water Res., 33, 2481 (1999).CrossRefGoogle Scholar
  31. 31.
    D. J. Müller and A. Engel, J. Mol. Biol., 285, 1347 (1999).CrossRefGoogle Scholar
  32. 32.
    M. Cho, J. Kim, J. Y. Kim, J. Yoon and J.-H. Kim, Water Res., 44, 3410 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Cho, Y. Lee, H. Chung and J. Yoon, Appl. Environ. Microbiol., 70, 1129 (2004).CrossRefGoogle Scholar
  34. 34.
    M. Cho, Doctoral dissertation, Seoul National University, Seoul, Korea (2005).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Taewan Kim
    • 1
  • Hyung-Eun Kim
    • 2
  • Jiyoon Cho
    • 3
  • Hak-Hyeon Kim
    • 3
  • Jiwon Seo
    • 3
  • Junghun Lee
    • 3
  • Joon-Young Choi
    • 4
  • Changha Lee
    • 3
    Email author
  1. 1.School of Urban and Environmental EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  2. 2.Center for Water Resource Cycle Research, KIST SchoolKorea Institute of Science and Technology (KIST)SeoulKorea
  3. 3.School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP)Seoul National UniversitySeoulKorea
  4. 4.Hyorim Industries Inc.Gyeonggi-doKorea

Personalised recommendations