Korean Journal of Chemical Engineering

, Volume 36, Issue 9, pp 1482–1488 | Cite as

Mesoporous carbon supported MgO for CO2 capture and separation of CO2/N2

  • Harshitha Burri
  • Rumana Anjum
  • Ramesh Babu Gurram
  • Harisekhar Mitta
  • Suresh Mutyala
  • Madhavi JonnalagaddaEmail author
Separation Technology, Thermodynamics


Mesoporous carbon derived from pongamia pinnata fruit hulls was used as support to incorporate magnesium oxide for the study of CO2 adsorption and separation of CO2/N2. All synthesized adsorbents were characterized by PXRD, N2 adsorption-desorption isotherms, Raman and SEM with EDX techniques. Characterization results revealed the existence of magnesium oxide on mesoporous carbon. CO2 adsorption on MgO incorporated mesoporous carbon was higher than bulk mesoporous carbon, due to the electrostatic interaction between magnesium oxide and CO2. High CO2 adsorption capacity 1.68 mmol/g was obtained for 10 wt% MgO incorporated mesoporous carbon at 298 K, 1 bar compared to remaining loadings, because of the high content of MgO. However, the N2 adsorption capacity decreased with the increase of MgO content due to a decrease in surface area and no interaction of the N2 molecule with the adsorbent. The selectivity of CO2/N2 was higher on 10 wt% MgO incorporated mesoporous carbon and the value was 40. The heat of CO2 adsorption was 36KJ/mol at low coverage of CO2, and CO2 adsorption capacity was constant in each adsorption cycle over the same adsorbent.


MgO Mesoporous Carbon CO2 and N2 Adsorption Selectivity Heat of CO2 Adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



HB and RA acknowledge the Science and Engineering Research Board, Department of Science and Technology, New Delhi, India for the financial support (Grant No. EMEQ-283/2014).


  1. 1.
    S. Hosseini, I. Bayesti, E. Marahel, F. Eghbali Babadi, L. Chuah Abdullah and T. S. Y. Choong, J. Taiwan Inst. Chem. Eng., 52, 109 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Aaron and C. Tsouris, Sep. Purif. Technol., 40, 321 (2005).Google Scholar
  3. 3.
    M. K. Al Mesfer and M. Danish, J. Environ. Chem. Eng., 6, 4514 (2018).CrossRefGoogle Scholar
  4. 4.
    R. Seabra, A. M. Ribeiro, K. Gleichmann, A. F. P. Ferreira and A. E. Rodrigues, Micropor. Mesopor. Mater., 277, 105 (2019).CrossRefGoogle Scholar
  5. 5.
    J. Pires, M. Bestilleiro, M. Pinto and A. Gil, Sep. Purif. Technol., 61, 161 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Knöfel, J. Descarpentries, A. Benzaouia, V. Zeleñák, S. Mornet, P. L. Llewellyn and V. Hornebecq, Micropor. Mesopor. Mater., 99, 79 (2007).CrossRefGoogle Scholar
  7. 7.
    B. B. Saha, S. Jribi, S. Koyama and I. I. El-Sharkawy, J. Chem. Eng. Data, 56, 1974 (2011).CrossRefGoogle Scholar
  8. 8.
    I. I. Gurten, M. Ozmak, E. Yagmur and Z. Aktas, Biomass Bioenergy, 37, 73 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Rattanapan, J. Srikram and P. Kongsune, Energy Procedía, 138, 949 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010).CrossRefGoogle Scholar
  11. 11.
    T. Uysal, G. Duman, Y. Onal, I. Yasa and J. Yanik, J. Anal. Appl. Pyrolysis, 108, 47 (2014).CrossRefGoogle Scholar
  12. 12.
    S. M. Yakout and G. Sharaf El-Deen, Arabian J. Chem., 9, S1155 (2016).CrossRefGoogle Scholar
  13. 13.
    X. Zhao, W. Li, F. Kong, H. Chen, Z. Wang, S. Liu and C. Jin, Mater. Chem. Phys., 219, 461 (2018).CrossRefGoogle Scholar
  14. 14.
    Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge and H. Lu, Appl. Energy, 153, 41 (2015).CrossRefGoogle Scholar
  15. 15.
    K. C. Chanapattharapol, S. Krachuamram and S. Youngme, Micropor. Mesopor. Mater., 245, 8 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Li, K. Huang, J. A. Schott, Z. Wu and S. Dai, Micropor. Mesopor. Mater., 249, 34 (2017).CrossRefGoogle Scholar
  17. 17.
    B. J. Kim, K. S. Cho and S. J. Park, J. Colloid Interface Sci., 342, 575 (2010).CrossRefPubMedGoogle Scholar
  18. 18.
    D. I. Jang and S. J. Park, Fuel, 102, 439 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Shi, N. Yan, H. Cui, Y. Liu and Y. Weng, J. Environ. Chem. Eng., 5, 4605 (2017).CrossRefGoogle Scholar
  20. 20.
    W. Cai, S. Zhang, X. Hu and M. Jaroniec, Energy Fuels, 32, 9701 (2018).CrossRefGoogle Scholar
  21. 21.
    H. Zhao, W. Yan, Z. Bian, J. Hu and H. Liu, Solid State Sci., 14, 250 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Jeon, Y. J. Min, S. H. Ahn, S.-M. Hong, J. S. Shin, J. H. Kim and K. B. Lee, Colloids Surf., A, 414, 75 (2012).CrossRefGoogle Scholar
  23. 23.
    M. A. Islam, S. Sabar, A. Benhouria, W. A. Khanday, M. Asif and B. H. Hameed, J. Taiwan Inst. Chem. Eng., 74, 96 (2017).CrossRefGoogle Scholar
  24. 24.
    B. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, Y. Zhu and Y. Xia, Micropor. Mesopor. Mater., 257, 1 (2018).CrossRefGoogle Scholar
  25. 25.
    S. J. Park and S. Y. Lee, J. Colloid Interface Sci., 346, 194 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).CrossRefGoogle Scholar
  27. 27.
    W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang and H. Zhang, J. Mater. Chem. A, 3, 5656 (2015).CrossRefGoogle Scholar
  28. 28.
    S. Cheng, L. Zhang, H. Xia and J. Peng, Green Process. Synth., 6, 487 (2017).Google Scholar
  29. 29.
    M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf and K. S. Kim, Environ. Sci. Technol., 47, 5467 (2013).CrossRefPubMedGoogle Scholar
  30. 30.
    C. Goel, H. Bhunia and P. K. Bajpai, J. Environ. Chem. Eng., 4, 346 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Yan, Y. Yu, C. Ma, J. Xiao, Q. Xia, Y. Li and Z. Li, Appl. Therm. Eng., 84, 118 (2015).CrossRefGoogle Scholar
  32. 32.
    J. McEwen, J. D. Hayman and A. Ozgur Yazaydin, Chem. Phys., 412, 72 (2013).CrossRefGoogle Scholar
  33. 33.
    K. Upendar, T. V. Sagar, G. Raveendra, N. Lingaiah, B. V. S. K. Rao, R. B. N. Prasad and P. S. S. Prasad, RSC Adv., 4, 7142 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Zhang, W. Cai, J. Yu, C. Ji and N. Zhao, Chem. Eng. J., 310, 216 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineering (KIChE) 2019

Authors and Affiliations

  • Harshitha Burri
    • 1
  • Rumana Anjum
    • 1
  • Ramesh Babu Gurram
    • 2
  • Harisekhar Mitta
    • 3
  • Suresh Mutyala
    • 4
  • Madhavi Jonnalagadda
    • 1
    Email author
  1. 1.Department of ChemistryGovernment Degree College for WomenKarimnagarIndia
  2. 2.Catalysis LaboratoryIndian Institute of Chemical TechnologyHyderabadIndia
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianChina
  4. 4.Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityGuangdongChina

Personalised recommendations