Korean Journal of Chemical Engineering

, Volume 36, Issue 9, pp 1432–1440 | Cite as

CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach

  • Liang Ma
  • Tingyu Yang
  • Yu Wu
  • Xiaoqing Yue
  • Jinrong Yang
  • Shuai Zhang
  • Qiang Li
  • Jianbin ZhangEmail author
Environmental Engineering


Spindle-like CaCO3 crystals with controllable sizes for papermaking were successfully prepared using CO2 (8% CO2/N2 mixture gas) and calcium carbide residue (CCR) waste, a by-product of acetylene gas and polyvinyl chloride production, as the raw materials by an atomization method at room temperature. The influences of solution concentration, reaction temperature, and gas/liquid flow rate ratios on the properties of the CaCO3 crystal were systematically investigated, and a possible atomization mechanism was proposed. The size of the as-prepared CaCO3 crystal with pure calcite phase was turned from 4.71×4.02 µm to 1.82×1.12 µm by adjusting the reaction conditions. The application of the as-prepared CaCO3 crystals from CCR waste as a filler for papermaking was explored. The R475 blue light whiteness of paper was increased from 77.3 to 80.6 with 11.4% CaCO3 crystals.


Calcium Carbide Residue (CCR) Spindle-like CaCO3 Carbon Dioxide Capture Atomization Papermaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21666027), the Program for Grassland Excellent Talents of Inner Mongolia Autonomous Region, the Natural Science Foundation of Inner Mongolia Autonomous Region (2016JQ02), Key Laboratory of Coal-based CO2 Capture and Geological Storage (Jiangsu Province, China University of Mining and Technology, 2016A06), the Inner Mongolia Science and Technology Key Projects, and training plan of academic backbone in youth of Inner Mongolia University of Technology.

Supplementary material

11814_2019_336_MOESM1_ESM.pdf (99 kb)
CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach


  1. 1.
    R. Monastersky, Nature, 497, 13 (2013).CrossRefPubMedGoogle Scholar
  2. 2.
    O. Buyukcakir, S. Je, S. Talapaneni, D. Kim and A. Coskun, ACS Appl. Mater. Inter., 9, 7209 (2017).CrossRefGoogle Scholar
  3. 3.
    P. Cox, R. Betts, C. Jones, S. Spall and I. Totterdell, Nature, 408, 184 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    J. Lee, H. Lee, S. Lim, B. Kim and J. Choi, J. Am. Chem. Soc., 137, 7210 (2015).CrossRefPubMedGoogle Scholar
  5. 5.
    L. S. Olabisi, P. B. Reich, K. A. Johnson, A. R. Kapuscinski, S. Suh and E. J. Wilson, Environ. Sci. Technol., 43, 1696 (2009).CrossRefPubMedGoogle Scholar
  6. 6.
    Z. Yuan, M. Eden and R. Gani, Ind. Eng. Chem. Res., 55, 3383 (2016).CrossRefGoogle Scholar
  7. 7.
    G. Alonso, D. Bahamon, F. Keshavarz, X. Gimenez, P. Gamallo and R. Sayos, J. Phys. Chem. C, 122, 3945 (2018).CrossRefGoogle Scholar
  8. 8.
    R. Zou, A. I. Abdel-Fattah, H. Xu, Y. Zhao and D. D. Hickmott, CrystEngComm, 12, 1337 (2010).CrossRefGoogle Scholar
  9. 9.
    J. A. Thote, R. V. Chatti, K. S. Iyer, V. Kumar, A. N. Valechha, N. K. Labhsetwar, R. B. Biniwale, M. K. N. Yenkie and S. S. Rayalu, J. Environ. Sci., 24, 1979 (2012).CrossRefGoogle Scholar
  10. 10.
    J. K. Stolaroff, G. V. Lowry and D. W. Keith, Energy Convers. Manage., 46, 687 (2005).CrossRefGoogle Scholar
  11. 11.
    W. J. J. Huijgen, WurWageningen Ur, 3, 13 (2007).Google Scholar
  12. 12.
    K. Amnadnua, W. Tangchirapatand and C. Jaturapitakku, Mater. Des., 51, 894 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Dueramae, W. Tangchirapat and C. Jaturapitakkul, Adv. Powder Technol., 29, 672 (2018).CrossRefGoogle Scholar
  14. 14.
    F. Cardoso, H. Fernandes, R. Pileggi, M. Cincotto, V. John, H. Fernandes, R. Pileggi, M. Cincotto and V. John, Powder Technol., 195, 143 (2009).CrossRefGoogle Scholar
  15. 15.
    D. Zhang, S. Li, W. Song and W. Lin, Energy Source Part A., 38, 577 (2016).CrossRefGoogle Scholar
  16. 16.
    C. Rattanashotinunt, P. Thairit, W. Tangchirapat and C. Jaturapitakkul, Mater. Des., 46, 106 (2013).CrossRefGoogle Scholar
  17. 17.
    J. Cheng, J. Zhou, J. Liu, X. Cao and K. Cen, Energy Fuel, 23, 2506 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Cao, F. Liu, Q. Lin and Y. Zhang, Prog. Nat. Sci., 18, 1147 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Li, M. Su, X. Xie, S. Wu and C. Liu, Appl. Energy, 145, 60 (2015).CrossRefGoogle Scholar
  20. 20.
    Y. Li, R. Sun, C. Liu, H. Liu and C. Lu, Int. J. Greenh. Gas Con., 9, 117 (2012).CrossRefGoogle Scholar
  21. 21.
    N. CesarConsoli, R. BeckSaldanha, J. CorrêaMallmann, T. Paula and B. ZakhariaHoch, Constr. Build. Mater., 157, 65 (2017).CrossRefGoogle Scholar
  22. 22.
    B. Guo, T. Zhao, F. Sha, Z. F. hang, Q. Li, J. Zhao and J. Zhang, J. CO 2 Util., 18, 23 (2017).CrossRefGoogle Scholar
  23. 23.
    S. Kirboga and M. Oner, CrystEngComm, 15, 3678 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Vinoba, M. Bhagiyalakshmi, G. A. race, C. D. hu, S. Nam, Y. Y. Oon, S. Yoon and S. Jeong, Langmuir, 29, 15655 (2013).CrossRefPubMedGoogle Scholar
  25. 25.
    H. Wang, V. Alfredsson, J. Tropsch, R. Ettl and T. Nylander, ACS Appl. Mater. Inter., 5 4035 (2013).CrossRefGoogle Scholar
  26. 26.
    D. Chen and T. G. M. V. D. Ven, Colloids Surf., A: Physicochem. Eng. Asp., 504, 11 (2016).CrossRefGoogle Scholar
  27. 27.
    T. Nypelo, M. Osterberg and J. Laine, ACS Appl. Mater. Inter., 3, 3725 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Said, H. Mattila, M. Järvinen and R. Zevenhoven, Appl. Energy, 112, 765 (2013).CrossRefGoogle Scholar
  29. 29.
    J. Wang, P. Wei, P. Liu and W. Sun, BioResources, 7, 5894 (2012).Google Scholar
  30. 30.
    A. M. Chapman, C. Keyworth, M. R. Kember, A. J. J. Lennox and C. K. Williams, ACS Catal., 5, 1581 (2015).CrossRefGoogle Scholar
  31. 31.
    S. Xu, Z. Ye and P. Wu, ACS Sustain. Chem. Eng., 3, 1810 (2015).CrossRefGoogle Scholar
  32. 32.
    H. Nebel, M. Neumann, C. Mayer and M. Epple, Inorg. Chem., 47, 7874 (2008).CrossRefPubMedGoogle Scholar
  33. 33.
    S. Kirbogan, M. Oner and E. Akyol, J. Cryst. Growth, 401, 266 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Gopi, V. Subramanian and K. Palanisamy, Ind. Eng. Chem. Res., 54, 3618 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Lopez-Marzo and J. Merkoci, J. Mater. Chem., 22, 15326 (2012).CrossRefGoogle Scholar
  36. 36.
    J. Wu and R. J. Zeng, Cryst. Growth Des., 17, 1854 (2017).CrossRefGoogle Scholar
  37. 37.
    J. H. Xiang, H. Q. Cao, J. H. A. Warner and A. R. Watt, Cryst. Growth Des., 8, 4583 (2008).CrossRefGoogle Scholar
  38. 38.
    L. Zheng, Y. L. Hu, Y. J. Ma, Y. Zhou, F. Nie, X. Liu and C. H. Pei, J. Cryst. Growth, 361, 217 (2012).CrossRefGoogle Scholar
  39. 39.
    Z. Zheng, B. Huang, H. Ma, Z. X. hang, M. Liu, Z. Liu, K. Wong and W. Lau, Cryst. Growth Des., 7, 1912 (2007).CrossRefGoogle Scholar
  40. 40.
    F. Sha, N. Zhu, Y. Bai, Q. Li, B. Guo, T. Zhao, F. Zhang and J. Zhang, ACS Sustain. Chem. Eng., 4, 3032 (2016).CrossRefGoogle Scholar
  41. 41.
    X. Geng, L. Liu, J. Jiang and S. Yu, Cryst. Growth Des., 10, 3448 (2010).CrossRefGoogle Scholar
  42. 42.
    S. Dickinson and K. Mcgrath, J. Mater. Chem., 13, 928 (2003).CrossRefGoogle Scholar
  43. 43.
    S. J. Han, M. Yoo, D. W. Kim and J. H. Wee, Energy Fuel, 25, 3825 (2011).CrossRefGoogle Scholar
  44. 44.
    J. Yang, S. Shih, C. Wu and C. Y. Tai, Powder Technol., 202, 101 (2010).CrossRefGoogle Scholar
  45. 45.
    Z. Zhang, D. Gao, H. Zhao, C. Xie, G. Guan, D. Wang and S. Yu, J. Phys. Chem. B, 110, 8613 (2006).CrossRefPubMedGoogle Scholar
  46. 46.
    L. Liu, D. He, G. Wang and S. Yu, Langmuir, 27, 7199 (2011).CrossRefPubMedGoogle Scholar
  47. 47.
    J. W. Butler, C. J. Lim and J. R. Grace, Fuel, 127, 78 (2014).CrossRefGoogle Scholar
  48. 48.
    L. Ma, B. Zhao, H. Shi, F. Sha, C. Liu, H. Du and J. B. Zhang, CrystEngComm., 19, 7132 (2017).CrossRefGoogle Scholar
  49. 49.
    A. Biasin, C. U. Segre and M. Strumendo, Cryst. Growth Des., 15, 5188 (2015).CrossRefGoogle Scholar
  50. 50.
    R. Gaudreault, N. Cesare, T. Ven and D. Weitz, Ind. Eng. Chem. Res., 54, 6243 (2015).CrossRefGoogle Scholar
  51. 51.
    F. Boissou, A. Mühlbauer, K. D. O. Vigier, L. Leclercq, W. Kunz, S. Marinkovic, B. Estrine, V. Nardello-Rataj and F. Jérôme, Green Chem., 16, 2463 (2014).CrossRefGoogle Scholar
  52. 52.
    Z. Wang, Y. Zhang, F. Jiang, H. Fang and Z. Wang, Polym. Chem., 5, 3379 (2014).CrossRefGoogle Scholar
  53. 53.
    M. Semsarilar, J. Tom, V. Ladmiral and S. Perrier, Polym. Chem., 3, 3266 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineering (KIChE) 2019

Authors and Affiliations

  • Liang Ma
    • 1
    • 2
  • Tingyu Yang
    • 2
    • 3
  • Yu Wu
    • 2
    • 3
  • Xiaoqing Yue
    • 2
    • 3
  • Jinrong Yang
    • 2
    • 3
  • Shuai Zhang
    • 2
    • 3
  • Qiang Li
    • 2
    • 3
  • Jianbin Zhang
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Coal-based CO2 Capture and Geological StorageChina University of Mining and TechnologyXuzhouChina
  2. 2.College of Chemical EngineeringInner Mongolia University of TechnologyHohhotChina
  3. 3.Inner Mongolia Engineering Research Center for CO2 Capture and UtilizationHohhotChina

Personalised recommendations