Korean Journal of Chemical Engineering

, Volume 36, Issue 9, pp 1499–1508 | Cite as

Transformation and coagulation behaviors of iron (III) species of solid polymeric ferric sulfate with high basicity

  • Dan Li
  • Yong KangEmail author
  • Jie Li
  • Xin Wang
Separation Technology, Thermodynamics


Solid polymeric ferric sulfate (SPFS) with excellent solubility and high basicity up to 20.16% was prepared employing hydrogen peroxide as oxidizer via acid deficient method. The transformation and size distribution of iron (III) species in the stock solution of SPFS (SPFSsto) were investigated, and coagulation behavior of iron (III) species in surface water was explored as well. It was found that the as-prepared SPFS with a high basicity was of high total iron content about 24.55% with an amorphous structure. The iron (III) species in SPFSsto suffered complicated behavior during aging and dilution, in which both further polymerization and depolymerization were included, the average diameters of iron (III) species in SPFSsto varied from 1 nm to 4 nm and decreased with the increase of R value at the total iron concentration of 1.0 M, and became more dispersed at the total iron concentration of 1.0 mM. The distribution of iron (III) species in surface water used in experiment depended on the initial pH value of the coagulation system and transformed during coagulation. In general, the low polymer of iron (III) species Fea dominated in acidic system, while the medium ones Feb and the high ones Fec dominated in neutral and basic systems, respectively. Charge neutralization and complexation by Feb species were found to be the most efficient mechanisms in removal of high molecular weight hydrophobic organics, and absorption and sweeping capabilities of Fec species dominated in removing low molecular weight hydrophilic organics.


Solid Polyferric Sulfate High Basicity Acid Deficiency Method Iron (III) Species Surface Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This article was funded by the National Key Research and Development Program of China (No. 2017YFC0210203-4) of China.


  1. 1.
    W. P. Cheng, Colloid Surf., A, 182, 57 (2001).CrossRefGoogle Scholar
  2. 2.
    D. Jia, M. Li, G. Liu, P. Wu, J. Yang, Y. Li, S. Zhong and W. Xu, Colloids Surf., A: Physicochem. Eng. Asp., 512, 111 (2017).CrossRefGoogle Scholar
  3. 3.
    Y Zhang, S. Guo, J. Zhou, C. Lin and G. Wang, Chem. Eng. Process.: Process Intensification, 49, 859 (2010).CrossRefGoogle Scholar
  4. 4.
    M. H. Fan, S. W. Sung, R. C. Brown, T. D. Wheelock and F. C. Laabs, J. Environ. Eng-Asce, 128, 483 (2002).CrossRefGoogle Scholar
  5. 5.
    A. I. Zouboulis, P. A. Moussas and F. Vasilakou, J. Hazard. Mater., 155, 459 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    X. Zhang, X. Wang, Q. Chen, Y. Lv, X. Han, Y. Wei and T. Xu, ACS Sustain. Chem. Eng., 5, 2292 (2017).CrossRefGoogle Scholar
  7. 7.
    J. Li, X. Liu, S. Wang, Z. Du, Y. Guo and F. Cheng, J. Chem. Technol. Biotechnol., 93, 365 (2018).CrossRefGoogle Scholar
  8. 8.
    Y. Wei, J. Lu, X. Dong, J. Hao and C. Yao, Korean J. Chem. Eng., 34, 2641 (2017).CrossRefGoogle Scholar
  9. 9.
    W. Chen, H. Zheng, H. Teng, Y. Wang, Y. Zhang, C. Zhao and Y. Liao, Plos One, 10, e0137116 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Y. Sun, X. Xiong, G. Zhou, C. Li and X. Guan, Sep. Purif. Technol., 115, 198 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Dong, B. Gao, Q. Yue, S. Sun, Y Wang and Q. Li, Chem. Eng. J., 258, 442 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Lei, J. Ma, X. Guan, A. Song and Y. Cui, Desalination, 247, 518 (2009).CrossRefGoogle Scholar
  13. 13.
    H. Dong, B. Gao, Q. Yue, H. Rong, S. Sun and S. Zhao, Desalination, 335, 102 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Rong, B. Gao, R. Li, Y Wang, Q. Yue and Q. Li, Chem. Eng. J., 243, 169 (2014).CrossRefGoogle Scholar
  15. 15.
    W. Xu and B. Gao, J. Membr. Sci., 415, 153 (2012).CrossRefGoogle Scholar
  16. 16.
    Q. Yue, J. Miao and B. Gao, Res. Environ Sci., 15, 17 (2002).Google Scholar
  17. 17.
    S. Bhattacharjee, J. Control Release, 235, 337 (2016).CrossRefPubMedGoogle Scholar
  18. 18.
    J. Q. Jiang and N. J. D. Graham, J. Chem. Technol. Biot, 73, 351 (1998).CrossRefGoogle Scholar
  19. 19.
    Y. J. Zheng, Z. Q. Gong, L. H. Liu and B. Z. Chen, Transactions, of Nonferrous Metals Society of China, 12, 983 (2002).Google Scholar
  20. 20.
    B. Gao, B. Liu, T. Chen and Q. Yue, J. Hazard. Mater., 187, 413 (2011).CrossRefPubMedGoogle Scholar
  21. 21.
    H.-Z. Zhao, C. Liu, Y. Xu and J.-R. Ni, Chem. Eng. J., 155, 528 (2009).CrossRefGoogle Scholar
  22. 22.
    Z. Bi, C. Feng, D. Wang, X. Ge and H. Tang, Colloids Surf., A Physicochem. Eng. Asp., 416, 73 (2013).CrossRefGoogle Scholar
  23. 23.
    C. Yao and Y. Sun, Environ. Chem., 10, 1 (1991).Google Scholar
  24. 24.
    K. E. Lee, N. Morad, T. T. Teng and B. T. Poh, Chem. Eng. J., 203, 370 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, B. Gao, Q. Yue, J. Wei and Q. Li, Chem. Eng. J., 142, 175 (2008).CrossRefGoogle Scholar
  26. 26.
    H. Hellman, R. S. Laitinen, L. Kaila, J. Jalonen, V. Hietapelto, J. Jokela, A. Sarpola and J. Ramo, J. Mass Spectrom.: JMS, 41, 1421 (2006).CrossRefPubMedGoogle Scholar
  27. 27.
    W. P. Cheng, Sep. Sci. Technol., 36, 2265 (2001).CrossRefGoogle Scholar
  28. 28.
    B. Wang, Y. Shui, M. He and P. Liu, Biochem. Eng. J., 121, 107 (2017).CrossRefGoogle Scholar
  29. 29.
    M. Yan, D. Wang, J. Ni, J. Qu, C. W. K. Chow and H. Liu, Water Res., 42, 3361 (2008).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Yan, D. Wang, J. Qu, J. Ni and C. W. Chow, Water Res., 42, 2278 (2008).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Fratiello, V. Kubo, S. Peak, B. Sanchez and R. E. Schuster, Inorg. Chem., 10, 393 (2002).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineering (KIChE) 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations