Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 9, pp 1466–1473 | Cite as

Monoolein cubosomes for enhancement of in vitro anti-oxidative efficacy of Bambusae Caulis in Taeniam extract toward carcinogenic fine dust-stimulated RAW 264.7 cells

  • Seok Ho Park
  • Jin-Chul KimEmail author
Biotechnology
  • 90 Downloads

Abstract

Monoolein cubosomes was prepared for enhancement of in vitro anti-oxidative efficacy of Bambusae Caulis in Taeniam extract (BCT) toward carcinogenic fine dust-stimulated RAW 264.7 cells. Hydrophobicized alginate (HpAlg) and gelatin (HpGel) were included as potential actuators for controlled release. The loading of additives (i.e., BCT, HpAlg, and HpGel) led to a decrease in the phase transition temperature of the cubic phase, evidenced by polarized optical microscopy. The hydrodynamic diameter of cubosomes was 148 to 187 nm, and it seemed not to be affected by the additives. Cubosome promoted the in vitro skin permeation of BCT more effectively than hydroxypropyl-β-cyclodextrin, a skin permeation enhancer. Cubosomal BCT was more efficacious than free BCT in scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and the intracellular reactive oxygen species of RAW 264.7 cells stimulated by carcinogenic fine dust. The internalization of cubosomes into cells, confirmed by fluorescence-activated cell sorting and super sensitive high resolution confocal laser scanning microscopy, could account for the higher radical-scavenging efficacy.

Keywords

Extract of Bambusae Caulis in Taeniam Cubic Phase Carcinogenic Fine Dust RAW 264.7 Cell ROS-scavenging Efficacy Cellular Internalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was carried out with the support of ‘R&D Program for Forest Science Technology (Project No. 2017029D10-1919-BA01)’ provided by Korea Forest Service (Korea Forestry Promotion Institute), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582).

Supplementary material

11814_2019_333_MOESM1_ESM.pdf (82 kb)
Monoolein cubosomes for enhancement of in vitro anti-oxidative efficacy of Bambusae Caulis in Taeniam extract toward carcinogenic fine dust-stimulated RAW 264.7 cells

References

  1. 1.
    J. C. Shah, Y. Sadhale and D. M. Chilukuri, Adv. Drug. Deliver. Rev., 47, 229 (2001).CrossRefGoogle Scholar
  2. 2.
    C. M. Chang and R. Bodmeier, Int. J. Pharm., 173, 51 (1998).CrossRefGoogle Scholar
  3. 3.
    M. G. Lara, M. V. L. Bentley and J. H. Collett, Int. J. Pharm., 293, 241 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    R. F. Turchiello, F. C. B. Vena, P. H. Maillard, C. S. Souza, M. V. B. L. Bentley and A. C. Tedesco, J. Photoch. Photobio. B., 70, 1 (2003).CrossRefGoogle Scholar
  5. 5.
    C. M. Chang and R. Bodmeier, Int. J. Pharm., 147, 135 (1997).CrossRefGoogle Scholar
  6. 6.
    E. Nazaruk, M. Sdęzak, E. Górecka, R. Bilewicz, Y. M. Osornio, P. Uebelhart and E. M. Landau, Langmut., 30, 1383 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Nakano, T. Teshigawara, A. Sugita, W. Leesajakul, A. Taniguchi, T. Kamo and T. Handa, Langmuir, 18, 9283 (2002).CrossRefGoogle Scholar
  8. 8.
    H. Qiu and M. Caffrey, Biomaterials, 21, 223 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    C. J. Drummond and C. Fong, Curr. Opin. Colloid. Interface. Sci., 4, 449 (1999).CrossRefGoogle Scholar
  10. 10.
    J. M. Seddon and R. H. Templer, Phil. Trans. R. Soc. Lond. A, 344, 377 (1993).CrossRefGoogle Scholar
  11. 11.
    L. Sagalowicz, M. E. Leser, H. J. Watzke and M. Michel, Trends. Food Sci. Technol., 17, 204 (2006).CrossRefGoogle Scholar
  12. 12.
    S. T. Hyde and S. Andersson, Z. Kristallogr. Cryst. Mater., 168, 213 (1984).CrossRefGoogle Scholar
  13. 13.
    W. Longley and T. J. McIntosh, Nature, 303, 612 (1983).CrossRefGoogle Scholar
  14. 14.
    Z. Dong, Y. Ma, K. Hayat, C. Jia, S. Xia and X. Zhang, J. Food Eng., 104, 455 (2011).CrossRefGoogle Scholar
  15. 15.
    T. K. Kwon and J. C. Kim, Biomacromolecules, 12, 466 (2010).CrossRefPubMedGoogle Scholar
  16. 16.
    M. Bartneck, H. A. Keul, G. Zwadlo-Klarwasser and J. Groll, Nano. Lett., 10, 59 (2009).CrossRefGoogle Scholar
  17. 17.
    N. Oh and J. H. Park, Int. J. Nanomed., 9, 51 (2014).Google Scholar
  18. 18.
    C. Olbrich, N. Schöler, K. Tabatt, O. Kayser and R. H. Müller, J. Pharm. Pharmacol., 56, 883 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    B. Sarmento, D. Mazzaglia, M. C. Bonferoni, A. P. Neto, M. do Céu Monteiro and V. Seabra, Carbohyd. Polym., 84, 919 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Bancos, D. L. Stevens and K. M. Tyner, Int. J. Nanomed., 10, 183 (2015).Google Scholar
  21. 21.
    G. Gaucher, K. Asahina, J. Wang and J. C. Leroux, Biomacromolecules, 10, 408 (2009).CrossRefPubMedGoogle Scholar
  22. 22.
    S. H. Park and J. C. Kim, Int. J. Polym. Mater. Po., Published online (2018).Google Scholar
  23. 23.
    J. Clogston and M. Caffrey, J. Control. Release., 107, 97 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Pisani, S. Bernstorff, C. Ferrero and P. Mariani, J. Phys. Chem. B., 105, 3109 (2001).CrossRefGoogle Scholar
  25. 25.
    M. F. Schulz, F. S. Bates, K. Almdal and K. Mortensen, Phys. Rev. Lett., 73, 86 (1994).CrossRefPubMedGoogle Scholar
  26. 26.
    M. Yashima, H. Arashi, M. Kakihana and M. Yoshimura, J. Am. Ceram. Soc., 77, 1067 (1994).CrossRefGoogle Scholar
  27. 27.
    C. J. Howard, B. J. Kennedy and B. C. Chakoumakos, J. Phys. Condens. Matter, 12, 349 (2000).CrossRefGoogle Scholar
  28. 28.
    R. G. Matthews, V. I. N. C. E. N. T. Massey and C. C. Sweeley, J. Biol. Chem., 250, 9294 (1975).PubMedGoogle Scholar
  29. 29.
    P. Kučerová, J. Skopalová, L. Kučera, J. Táborský, H. Švecová, K. Lemr and P. Barták, Electrochim. Acta, 215, 617 (2016).CrossRefGoogle Scholar
  30. 30.
    L. M. Cheung, P. C. Cheung and V. E. Ooi, Food Chem., 81, 249 (2003).CrossRefGoogle Scholar
  31. 31.
    C. D. Silva, R. S. Herdeiro, C. J. Mathias, A. D. Panek, C. S. Silveira, V. P. Rodrigues, M. N. Renno, D. Q. Falcao, D. M. Cerqueira, A. B. M. Minto, E. C. A. Eleutherio, C. H. Quaresma, J. F. M. Silva, F. S. Menezes and F. L. P. Nogueira, Pharmacol. Res., 52, 229 (2005).CrossRefPubMedGoogle Scholar
  32. 32.
    L. Tian, Y. Zhao, C. Guo and X. Yang, Carbohyd. Polym., 83, 537 (2011).CrossRefGoogle Scholar
  33. 33.
    F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu and X. Liu, Nature, 463, 1061 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Sridevi and P. V. R. Diwan, Eur. J. Pharm. Biopharm., 54, 151 (2002).CrossRefPubMedGoogle Scholar
  35. 35.
    A. Doliwa, S. Santoyo and P. Ygartua, Drug. Dev. Ind. Pharm., 27, 751 (2001).CrossRefPubMedGoogle Scholar
  36. 36.
    S. A. Al-Suwayeh, E. I. Taha, F. M. Al-Qahtani, M. O. Ahmed and M. M. Badran, Sci. World. J., 2014, 9 (2014).CrossRefGoogle Scholar
  37. 37.
    Y. Yan, J. Xing, W. Xu, G. Zhao, K. Dong, L. Zhang and K. Wang, Int. J. Pharm., 474, 182 (2014).CrossRefPubMedGoogle Scholar
  38. 38.
    K. Wang, Y. Yan, G. Zhao, W. Xu, K. Dong, C. You and J. Xing, Polym. Chem., 5, 4658 (2014).CrossRefGoogle Scholar
  39. 39.
    L. B. Lopes, F. F. Speretta and M. V. L. Bentley, Eur. J. Pharm. Sci., 32, 209 (2007).CrossRefPubMedGoogle Scholar
  40. 40.
    L. B. Lopes, D. A. Ferreira, D. de Paula, M. T. J. Garcia, J. A. Thomazini, M. C. Fantini and M. V. L. Bentley, Pharm. Res., 23, 1332 (2006).CrossRefPubMedGoogle Scholar
  41. 41.
    H. Herai, T. Gratieri, J. A. Thomazine, M. V. L. B. Bentley and R. F. V. Lopez, Int. J. Pharm., 329, 88 (2007).CrossRefPubMedGoogle Scholar
  42. 42.
    T. Rattanapak, K. Young, T. Rades and S. Hook, J. Pharm. Pharmacol., 64, 1560 (2012).CrossRefPubMedGoogle Scholar
  43. 43.
    R. Rajan, S. Jose, V. B. Mukund and D. T. Vasudevan, J. Adv. Pharm. Technol. Res., 2, 138 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radical Biol. Med., 26, 1231 (1999).CrossRefGoogle Scholar
  45. 45.
    D. Zhang and Y. Hamauzu, Food Chem., 88, 503 (2004).CrossRefGoogle Scholar
  46. 46.
    N. J. Miller and C. A. Rice-Evans, Food Chem., 60, 331 (1997).CrossRefGoogle Scholar
  47. 47.
    J. Javanmardi, C. Stushnoff, E. Locke and J. M. Vivanco, Food Chem., 83, 547 (2003).CrossRefGoogle Scholar
  48. 48.
    M. B. Arnao, A. Cano and M. Acosta, Food Chem., 73, 239 (2001).CrossRefGoogle Scholar
  49. 49.
    A. Nishiyama, S. Tsuji, M. Yamashita, R. A. Henriksen, Q. N. Myrvik and Y. Shibata, Cell. Immunol., 239, 103 (2006).CrossRefPubMedGoogle Scholar
  50. 50.
    S. Onodera, K. Suzuki, T. Matsuno, K. Kaneda, M. Takagi and J. Nishihira, Immunology, 92, 131 (1997).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    C. Bianco, F. M. Griffin and S. C. Silverstein, J. Exp. Med., 141, 1278 (1975).CrossRefPubMedGoogle Scholar
  52. 52.
    Y. Bi, T. O. Collier, V. M. Goldberg, J. M. Anderson and E. M. Greenfield, J. Orthop. Res., 20, 696 (2002).CrossRefPubMedGoogle Scholar
  53. 53.
    Y. Zhang, N. Kohler and M. Zhang, Biomaterials, 23, 1553 (2002).CrossRefPubMedGoogle Scholar
  54. 54.
    X. Banquy, F. Suarez, A. Argaw, J. M. Rabanel, P. Grutter, J. F. Bouchard and S. Giasson, Soft Matter, 5, 3984 (2009).CrossRefGoogle Scholar
  55. 55.
    T. Dos Santos, J. Varela, I. Lynch, A. Salvati and K. A. Dawson, Small, 7, 3341 (2011).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineering (KIChE) 2019

Authors and Affiliations

  1. 1.Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and BiotechnologyKangwon National UniversityChunchon, Kangwon-doKorea

Personalised recommendations