Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 1004–1012 | Cite as

Effect of filler size on thermal properties of paraffin/silver nanoparticle composites

  • In-Hyun Kim
  • Hyo-Won Sim
  • Hee-Hyeon Hong
  • Dong-Woo Kim
  • Wonjoo Lee
  • Dong-Koo LeeEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 65 Downloads

Abstract

The effects of different filler sizes on the thermal properties were investigated in a thermal conductive composite (TCC) phase-change material (PCM) with three sizes (9, 65, and 300 nm) of silver nanoparticles (Ag NPs). Ag NP/paraffin composites (Ag/PW) were prepared by dispersing 0.5, 1.0, 1.5, and 2.0 wt% of Ag NPs stably into molten paraffin using ultra-sonication and then solidifying the mixture. The thermal properties of the composite, such as the thermal conductivity, latent heat capacity, and thermal stability, were characterized by laser flash analysis (LFA), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA), respectively. The degree and trend of the enhancement of the thermal properties differed based on the Ag NP size, and the efficiency increased with a decreasing particle size. In addition, we adopted some theoretical models to describe the behavior of thermal conductivity enhancement in this study. The results were explained by the difference in the interfacial area and degree of construct cluster of the Ag NPs, which were dependent on the particle size.

Keywords

Phase Change Material (PCM) Silver Nanoparticle (Ag NPs) Filler Size Effect Thermal Conductivity Latent Heat Capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010).CrossRefGoogle Scholar
  3. 3.
    A. Suwono and G. A. Mansoori, Energ. Source., 16, 117 (1994).CrossRefGoogle Scholar
  4. 4.
    H. Yin, X. Gao, J. Ding and Z. Zhang, Energy Convers. Manag., 49, 1740 (2008).CrossRefGoogle Scholar
  5. 5.
    S. R. White, P. T. Mather and M. J. Smith, Polym. Eng. Sci., 42, 51 (2002).CrossRefGoogle Scholar
  6. 6.
    S. Nikkeshi, M. Kudo and T. Masuko, J. Appl. Polym. Sci., 69, 2593 (1998).CrossRefGoogle Scholar
  7. 7.
    R. Zhang, K.-s. Moon, W. Lin and C. P. Wong, J. Mater. Chem., 20, 2018 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Wu, H. Wang, S. Xiao and D. Zhu, Procedia Eng., 31, 240 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Tigner, M. M. Sedeh, T. Sharpe, A. Bufford and T. Floyd-Smith, Appl. Therm. Eng., 60, 88 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Kim and L. T. Drzal, Sol. Energy Mater. Sol. Cells, 93, 136 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Zabalegui, D. Lokapur and H. Lee, Int. J. Heat Mass Transf., 78, 1145 (2014).CrossRefGoogle Scholar
  12. 12.
    F. Yavari, H. R. Fard, K. Pashayi, M. A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc and N. Koratkar, J. Phys. Chem. C, 115, 8753 (2011).CrossRefGoogle Scholar
  13. 13.
    F.-Y. Yuan, H.-B. Zhang, X. Li, X.-Z. Li and Z.-Z. Yu, Compos. Part A Appl. Sci. Manuf., 53, 137 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Kemaloglu, G. Ozkoc and A. Aytac, Polym. Compos., 31, 1398 (2010).Google Scholar
  15. 15.
    J. Guo, P. Saha, J. Liang, M. Saha and B. P. Grady, J. Therm. Anal. Calorim., 113, 467 (2013).CrossRefGoogle Scholar
  16. 16.
    J.-W Bae, W Kim, S.-H. Cho and S.-H. Lee, J. Mater: Sci., 35, 5907 (2000).CrossRefGoogle Scholar
  17. 17.
    N. Tsutsumi, N. Takeuchi and T. Kiyotsukuri, J. Polym. Sci. Part B Polym. Phys., 29, 1085 (1991).CrossRefGoogle Scholar
  18. 18.
    H. Wu and L. T. Drzal, Polym. Compos., 34, 2148 (2013).CrossRefGoogle Scholar
  19. 19.
    W Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, J. Appl. Polym. Sci., 104, 1312 (2007).CrossRefGoogle Scholar
  20. 20.
    K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).CrossRefGoogle Scholar
  21. 21.
    T. Shizuma, K. Miyasaka and K. Ishikawa, J. Macromol. Sci. B., 22, 601 (1983).CrossRefGoogle Scholar
  22. 22.
    S.-Y. Fu, X.-Q. Feng, B. Lauke and Y.-W Mai, Compos. B Eng., 39, 933 (2008).CrossRefGoogle Scholar
  23. 23.
    Z. Zhang and X. Fang, Energy Convers. Manag., 47, 303 (2006).CrossRefGoogle Scholar
  24. 24.
    A. Sari and A. Karaipekli, Appl Therm. Eng., 27, 127 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Hiramatsu and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).CrossRefGoogle Scholar
  26. 26.
    U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Chen, Y.-G. Feng, X. Wang, T.-C. Li, J.-Y. Zhang and D.-J. Qian, Langmuir, 23, 5296 (2007).CrossRefGoogle Scholar
  28. 28.
    B. A. Korgel, S. Fullam, S. Connolly and D. Fitzmaurice, J. Phys. Chem. B, 102, 8379 (1998).CrossRefGoogle Scholar
  29. 29.
    Chandni, N. Andhariya, O. P. Pandey and B. Chudasama, RSC Adv., 3, 1127 (2013).CrossRefGoogle Scholar
  30. 30.
    J. Xiang and L. T. Drzal, Sol. Energy Mater. Sol. Cells, 95, 1811 (2011).CrossRefGoogle Scholar
  31. 31.
    S. C. Lin and H. H. Al-Kayiem, Sol. Energy, 132, 267 (2016).CrossRefGoogle Scholar
  32. 32.
    B. Li, T. Liu, L. Hu, Y. Wang and L. Gao, ACS Sustain. Chem. Eng., 1, 374 (2013).CrossRefGoogle Scholar
  33. 33.
    Q. Tang, J. Sun, S. Yu and G. Wang, RSC Adv., 4, 36584 (2014).CrossRefGoogle Scholar
  34. 34.
    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Prog. Polym. Sci., 61, 1 (2016).CrossRefGoogle Scholar
  35. 35.
    J. G. Park, Q. Cheng, J. Lu, J. Bao, S. Li, Y. Tian, Z. Liang, C. Zhang and B. Wang, Carbon, 50, 2083 (2012).CrossRefGoogle Scholar
  36. 36.
    M. Chirtoc, N. Horny, I. Tavman, A. Turgut, I. Kökey and M. Omastová, Int. J. Therm. Sci., 62, 50 (2012).CrossRefGoogle Scholar
  37. 37.
    B. L. Zhu, J. Wang, H. Zheng, J. Ma, J. Wu and R. Wu, Compos. B Eng., 69, 496 (2015).CrossRefGoogle Scholar
  38. 38.
    M. Chirtoc, N. Horny, J.-F. Henry, A. Turgut, I. Kökey, I. Tavman and M. Omastová, Int. J. Thermophys., 33, 2110 (2012).CrossRefGoogle Scholar
  39. 39.
    D. Yu and Q. An, Polym. Plast. Technol. Eng., 48, 1230 (2009).CrossRefGoogle Scholar
  40. 40.
    H.S. Kim, J.-u. Jang, J. Yu and S.Y. Kim, Compos. B Eng., 79, 505 (2015).CrossRefGoogle Scholar
  41. 41.
    J. P. Stora, Nucl. Technol., 17, 225 (1973).CrossRefGoogle Scholar
  42. 42.
    M. Nabil and J.M. Khodadadi, Int. J. Heat Mass Transf., 67, 301 (2013).CrossRefGoogle Scholar
  43. 43.
    Z. Hashin and S. Shtrikman, J. Appl. Phys., 33, 3125 (1962).CrossRefGoogle Scholar
  44. 44.
    P. Keblinski, R. Prasher and J. Eapen, J. Nanopart. Res., 10, 1089 (2008).CrossRefGoogle Scholar
  45. 47.
    V. Ganesan, C. Louis and S. P. Damodaran, J. Phys. Chem. C, 122, 6918 (2018).CrossRefGoogle Scholar
  46. 46.
    Y. Chen, W. Luo, J. Wang and J. Huang, J. Phys. Chem. C, 121, 12603 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • In-Hyun Kim
    • 1
  • Hyo-Won Sim
    • 1
  • Hee-Hyeon Hong
    • 1
  • Dong-Woo Kim
    • 1
  • Wonjoo Lee
    • 1
  • Dong-Koo Lee
    • 1
    Email author
  1. 1.Advanced Industrial Chemistry Research CenterKorea Research Institute of Chemical TechnologyUlsanKorea

Personalised recommendations